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Main Points

• “Light” is energy 

• “Light” is an experience 

• The core of vision science is to understand the relationship between 
these two domains.



Levels of Understanding
• Molecular 

• Cellular 

• Systems 

• Behavioral 

• We want it all!



Light as Energy



Light as Energy
• Quanta 

• Only one property 

• Energy (E) 

• Frequency (nu) 

• Wavelength (lambda) 

• Light has no color

E = h ⋅ν
c = λ ⋅ν

E = c ⋅h
λ

Planck-Einstein



Black Body Radiator



Black Body Radiator



Light Energy Interacts with Matter

• Reflected 

• Transmitted 

• Absorbed



Visible Spectra

Each session of data collection included taking a measurement of the dark reference (background) of our apparatus and 
a sample of the incident light beam. Each of these samples was also collected 10 times to reduce the signal to noise ratio. 
We also applied a local average smoothing over a 5 pixel area to each sample. 

Fig. 3. Experimental setup. 

The color of the reflected light depends on the color of incident light. Thus, the true descriptor of the spectral behavior 
of a material is the ratio of the light reflected from that material over the light that is incident on that material. For non- 
Lambertian surfaces this ratio changes as the angle of incidence and angle of reflectance change. The ultimate goal is to 
produce a complete BRDF for in-vivo human skin. Our current measurements are for a 0" angle of incidence and approx- 
imately 4" angle of reflectance (to avoid placing the fiber optic cable on the direction of the beam) Thus, what we are 
measuring is: 

where BRDF() is the Bidirectional Reflectance Distribution Function, which is a five parameter function, 
BRDF(B,, (p,;8,, q i ;h) .  8 ,  cp ,  are the spherical coordinates of the angle of reflectance, 8 ,  cp ,  are the spherical coordi- 
nates of the angel of incidence and h is the wavelength at which the BRDF is measured. The following figures show the 
BRDF ratio plotted against the wavelength of the visible part of the electromagnetic spectrum. 

Skin Reflectance 

450 500 550 600 650 700 
Wavelength 

Fig. 4. Spectra of the back of the hand. 



How The Eye Works

• Optical instrument 

• Cornea and lens 

• Neural information processor 

• Retina – a complex network of neurons



Optics of the Eye: 
René Descartes (1596–1650)



The Visual System



The Eyes in the Head





The Normal Eye







Optics of the Eye

• Focal Length of a lens 
• Optical Power in dioptres 
• Relative Optical Power in dioptres 
• Far Point, Near Point, Resting Point



Problems with the Optics
• Where is the far point? 

• At optical infinity (Emmetropia) 
• Closer than infinity (Myopia) 
• Farther than infinity (Hyperopia) 

• Cataract 
• Astigmatism 
• Resting Point



The normal appearance of the crystalline lens at the bottom and the anterior chamber of the eye above this is 
shown here. The lens becomes progressively less elastic and distensible with age. This is known as presbyopia 
because there is diminution of the power of accommodation with greater difficulty focusing at close distances. 

Hence, the need for bifocals starting in their 40's for many people.





Loss of Accommodation Power: Presbyopia

Franciscus Cornelis Donders 
1818-1889



This is a cataract. A cataract results from opacification of the crystalline lens. This opacification results from a series of events starting in the lens cortex 
with rarefaction, then liquefecation, of cortical cells. This leads to fragmentation of lens fibers and extracellular globule formation. In the lens nucleus 
there is a progressive increase in the amount of insoluble proteins which leads to hardening (sclerosis) and brownish discoloration (brunescence).

Cataracts



On cross-section of the eyeball can be seen a lens at the right which contains a cataract. Cataracts are more common in the elderly and in persons with 
diabetes mellitus. Such cataracts can be removed and replaced by a lens implant.

Cataracts



Astigmatism



Astigmatism



Resting PointH. W. LEIBOWITZ AND D. A. OWENS

5 ~0 Eye Chart (0.25D)

Argon Laser

Glass Screen
Filler

Mirro

2. 5 mW He-Ne (red) laser could be presented as the
stimulus by reflecting the diverged beam onto a ground-
glass screen 15. 4 cm (6. 5 D) from the eye. Luminances
were equated with those of the chart by inserting neutral
density filters between the eye and the ground-glass
screen. Care was taken to ensure that the circular red
(632. 8 nm) laser pattern, which subtended 13. 3 deg.,-Ltens contained no sharply defined edges or Newton rings that

ilter might serve as stimuli for accommodation. The ob-
server's head was held in position by a head and chin
rest. Black draperies concealed the apparatus from
view.

FIG. 1. Schematic diagram of apparatus
accommodation while viewing the clinical
fuse laser pattern.

used to evaluate
test chart and a dif-

entrance pupil of the eye is located at the focal distance
of a positive lens placed in the light path of the test pat-
tern, the optical distance of the drum can be convenient-
ly varied from optical infinity to the diopter value of
lens, without changes of the apparent size or brightness
of the laser pattern' 8; this is the Badal principle.

A number of studies have shown that measures of ac-
commodation taken with the laser technique are in close
agreement with those obtained from both subjective and
objective methods of refraction. 20-22 The major advan-
tages of the laser technique are that (1) accommodation
can be measured rapidly (- to 2 min per determination)
and accurately (within 0. 13 D) without special training;
(2) because the test pattern is superimposed optically
on the visual field, it interferes minimally with the on-
going visual task and permits measurements in natural-
istic settings; (3) if the test pattern is presented for
0. 5 s or less, it has no effect on the subject's state of
accommodation. 18

Figure 1 is a schematic diagram of the apparatus. In
the laser optometer, which includes the channel that ex-
tends to the right, the beam from a 0. 5 mW argon
(green) laser (TRW model 83A) was made divergent by
a - 15 D ophthalmic lens and reflected by a series of
first-surface mirrors to the surface of a gold-painted
aluminum drum. The drum was rotated at a rate of ap-
proximately 1 rpm by a reversible dc motor. A + 4 D
ophthalmic lens served as the Badal lens. An elec-
tronic shutter restricted the exposure of the test pat-
tern to 0. 5 s. Neutral density filters, positioned be-
tween the laser and the drum, permitted adjustment of
the luminance of the green (514. 5 nm) test pattern to a
comfortable level.

A Lameris eye chart 23 that subtended 7. 5 by 7. 5 deg,
which contained nine rows of black (reflectance 4%)
Landolt C's whose over-all sizes ranged from 31 to
2.6 min of arc, was positioned 4 m (0. 25 D) from the
eye; it was illuminated by a slide projector so that the
white portion (reflectance 69%) had a luminance of
109. 6 cd/M2 . Luminance was reduced to 1. 10 cd/M2

by placing neutral density filters between the eye and
the chart. Alternatively, the speckle pattern from a

Fourteen undergraduate students, ages 18 to 24,
served as subjects. All demonstrated near and far vi-
sual acuities of at least 20/20, as measured by a Titmus
Vision Tester. Six of them wore their normal correc-
tion throughout the experiment. No attempt was made,
in addition to the screening procedure, to evaluate the
adequacy of individual prescriptions. 24

Accommodation was measured under five conditions:
in total darkness (the dark focus of accommodation),
with the eye-chart accommodative stimulus at the high
and at the low luminance levels, and with the He-Ne
laser-pattern accommodative stimulus at the high- and
at the low-luminance levels. The subjects were in-
structed to fixate carefully the smallest discriminable
row of Landolt rings for the chart conditions, to "just
look at the speckles" for the laser-stimulus condition,
and to "relax" their eyes for the dark condition. All
stimulus displays were viewed monocularly with the
right eye. Under all conditions, the argon laser test
pattern was presented for 0. 5 s at irregular intervals.
Following each test flash, the subject indicated the pres-
ence and direction of motion within the test pattern. For
each measure, the test pattern was first flashed at the
extreme near and far optical positions, thus bracketing
the subject's accommodative state. The bracket inter-
val, or difference between near and far test flashes,
was gradually reduced in succeeding test presentations
until the point of no apparent motion was found. The
direction of drum rotation was intermittently reversed
to prevent possible association of direction of the speckle
movement with accommodative response. The order of
stimulus conditions was counterbalanced across subjects
so that each condition was seen first and last by the same
number of subjects. The five measures were taken
twice, in order, on each subject.
Results

The mean accommodative responses obtained for in-
dividual observers are presented in Table I. The dark
focus of accommodation ranged from 0. 37 to 2.28 D,
with a mean of 1. 25 D. In general, focus for both the
high- and low-luminance laser patterns was essentially
the same as that obtained in total darkness. Figure 2
presents a scatter diagram that illustrates the relation-
ship between accommodation to the laser pattern and the
dark focus of accommodation. Each data point repre-
sents the accommodation of an individual eye. The ordi-
nate indicates the accommodative response to the laser
target; the abscissa indicates the dark focus of accom-
modation. If the eyes were accommodating to the laser

1122 Vol. 65

Leibowitz, H. W., & Owens, D. A. (1975). Night myopia and the intermediate dark 
focus of accommodation. Journal of the Optical Society of America, 
65(10), 1121–1128. 
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The Normal Retina



Three Layers, Five Cells
• Photoreceptors 

• Bipolar Cells 

• Retinal Ganglion Cells 

• Horizontal Cells 

• Amacrine Cells



The normal histologic appearance of the retina shows many layers. The lowest layer just above the connective tissue is the layer of rods and cones. Above this are 
layers of external and internal plexiform and nuclear lamina. The nerve fibers are at the top and collect together to enter the optic nerve at the optic disk.



Courtesy of Max Snodderly, University of Texas Austin





Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 26.2 Summary diagram of the cell types and connections in the primate retina. R, rod; C, cone; H, 
horizontal cell; FMB, flat midget bipolar; IMB, invaginating midget bipolar; IDB, invaginating diffuse bipolar; RB, 
rod bipolar; A, amacrine cell; P, parasol cell (also confusingly called an M cell because of its thalamic targets, see 
text for details); MG, midget ganglion cell (also confusingly called a P cell). Adapted from Dowling (1997).





Østerberg (1935)
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Photopic vs. Scotopic Vision
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Dark adaptation after 100% bleach
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Lamb, T. D. & Pugh, E. N., Jr. (2006). Proctor Lecture, ARVO



Liang, Williams, & Miller (1997)

Liang, J., Williams, D. R., & Miller, D. T. (1997). Supernormal vision and high-resolution retinal imaging through adaptive optics. Journal of the Optical Society of America A, 14(11), 2884-2892. doi:10.1364/JOSAA.14.002884
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Principle of Univariance

• A receptor signals the number of quanta (or the rate) absorbed. It 
can not signal the wavelength of the quanta. 

• All wavelengths cause the same voltage change when they are 
absorbed 

• 700 microvolts per quantum for rods 
• 25 or smaller microvolts per quantum for cones



What Can We Do with Psychometric Functions?

• Answer questions about sensory processes 
• What is the minimum amount of energy needed for “seeing?” 
• Hecht, Shlaer, & Pirenne (1942)

Hecht, S., Shlaer, S., & Pirenne, M. H. (1942). Energy, quanta, and vision. Journal of General Physiology, 25(6), 819840. 



Psychometric Function

0.0

0 .2

0 .4

0 .6

0 .8

1 .0

1 0 100 1000

Selig Hecht Data

P
ro

ba
bi

lit
y 

of
 “

ye
s”

Mean Number of Quanta at Cornea

0.0

0 .2

0 .4

0 .6

0 .8

1 .0

1 0 100 1000

Simon Shlaer Data

P
ro

ba
bi

lit
y 

of
 “

ye
s”

Mean Number of Quanta at Cornea

0.0

0 .2

0 .4

0 .6

0 .8

1 .0

1 0 100 1000

Maurice Henri Pirenne Data

P
ro

ba
bi

lit
y 

of
 “

ye
s”

Mean Number of Quanta at Cornea

0.0

0.2

0.4

0.6

0.8

1.0

10 100 1000

Pr
ob

ab
ilit

y 
of

 “y
es

”
Mean Number of Quanta at Cornea

Hecht, S., Shlaer, S., & Pirenne, M. H. (1942). Energy, quanta, and vision. Journal of General Physiology, 25(6), 819840. 



Poisson Probability Distribution

Mean = µ = λ

Variance =σ 2 = λ

Standard Deviation = σ = λ
� 

p n : λ( ) = λn e−λ

n!

λ > 0, n = 0,1,2,3…



Poisson Process
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Poisson Process
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Observed Frequencies

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

Poisson Process (mean = 2.0)

Fr
eq

ue
nc

y

Number of Quanta per Flash

500 Trials



Observed Probabilities
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Theoretical Poisson Distribution
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Poisson Probability Distributions
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Poisson Psychometric Functions
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Theory vs. Data
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Hecht, S., Shlaer, S., & Pirenne, M. H. (1942). Energy, quanta, and vision. Journal of General Physiology, 25(6), 819840. 



Fit of Data to Theory
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Fits of Models
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Data from Table V

SH1 SH2 SS1 SS2 MPH
No. Quanta 8 6 7 10 4
Chi-Square 2.1862 1.8612 0.9524 1.2316 4.6696
DF 4 4 4 4 4
Probability 0.7016 0.7613 0.9169 0.9729 0.3229
Alpha 1.2475 1.2813 1.1058 0.9285 1.5253
Quantum Eff 0.0566 0.0523 0.0784 0.1179 0.0298



Conclusions

• You need 4-10 photons to be absorbed by receptors to “see” 
• Quantum efficiency is between 5 and 10 percent



Main Points

• Duplex Retina 

• 1 Type of Rod Receptor - Scotopic Vision 

• 3 Types of Cone Receptors (S, M, L) - Photopic Vision 

• Receptors can only signal rate of quantal absorption



Receptive Fields



Haldan Keffer Hartline 
22 December 1903 – 17 March 1983

“Spatial effects. No description of the optic 
responses in single fibers would be complete 
without a description of the region of the retina 
which must be illuminated in order to obtain a 
response in any given fiber. This region will be 
termed the receptive field of the fiber.” 

Hartline, H. K. (1938). The response of single optic nerve fibers of the vertebrate 
eye to illumination of the retina. American Journal of Physiology, 121(2), 

400–415.
Nobel Laureate in Medicine 

1967 
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Ganglion Cell Receptive Fields





On-Center, Off-Surround Ganglion Cell
Receptive FieldResponse Surface







S. H. DEVRIES AND D. A. BAYLOR2054

TABLE 2. Properties of mean effective stimulus and autocorrelation functions of ganglion cells in one retina

Minimum Interspike
Time-to-Peak, ms Interval, ms Field Area, mm2/103

Cell Type Mean Range Mean Range Mean Range Mean* n

ON BT 0176 0172 0185 2.4 2.2 2.5 6.5 60.8 71.5 108 4
ON BS 0171 0160 0182 5.3 5 6 100.9 70.5 116.5 42 3
OFF BT 0157 0153 0162 2.5 2.4 2.6 rrr 3
OFF BS 0189 0187 0191 2.9 2.9 2.9 64.7 65.6 63.8 47.4 2
ON sluggish 0204 0194 0213 9.5 7 12 64.5 54.6 74.5 133.3 2
OFF sluggish 0229 0224 0237 7.7 7.5 8 24 22.6 26.5 174.9 3
LED 0286 1.3 9 39.4 1
OFF delayed 0226 0224 0227 3.5 3.2 3.9 77.7 71.2 83.3 3
ON h 0177 3.3 22 1

Values are given for time-to-peak of mean stimulus, minimum interspike interval of autocorrelation function, and area within 1 s boundary of mean
effective stimulus profile at its peak. For comparison, receptive field areas measured by Amthor et al. (1989a,b) are included. Comparison is qualitative
because areas were measured with different techniques and at slightly different eccentricities. In addition to cells tabulated, 12 ON-OFF DS and 3 ON DS
cells were identified in this preparation. Five cells were not classified. Areas were not calculated for OFF BT cells due to poor fit by single Gaussian.
Mean stimulus intensity: 2.4 Rh!rod01rs01. For abbreviations, see Table 1. * Amthor et al. (1989a,b).

to the profile in each stimulus frame (Fig. 5) , profiles in Receptive field mosaics
successive frames had different shapes and positions. 2) The Our purpose was to determine how the receptive fields ofprofiles of OFF BT cells were poorly fitted because they ganglion cells of a given class are laid out. This was exam-consisted of a central peak superimposed on a broad, shallow ined by plotting the 1-s ellipses from the Gaussian fits.dome (Fig. 5) . These profiles were satisfactorily fitted by Figure 6, A–D, shows plots for ON BT, OFF BS, OFF delayed,the sum of two Gaussians, suggesting that more than one and OFF sluggish cells in seven different preparations. Themechanism contributed to the central peak. 3) With the dim plots show that the receptive fields frequently met near theirstimuli usually employed, receptive field surrounds were 1-s borders, the receptive field centers being Ç2 s apart.negligible. Weak surrounds are evident in Fig. 5 as slight This result is not an artifact of the regular placement ofdownward deviations of the lowest points in most plots. electrodes in the array, because the interelectrode spacing isBrighter stimuli revealed stronger surrounds, and a better fit narrow (70 mm) compared with the center-center spacing ofwas obtained with the difference of two Gaussians (Rodieck the receptive fields in Fig. 6, A–D (250–500 mm). More-1965). With these exceptions, the generalized Gaussian pro-
vided a satisfactory description, and the Gaussian widths
(smajor , sminor ) provided a useful measure of receptive field
diameter. In the central retina, s varied between 50 and 300
mm on the retinal surface, and the elongation ratio smajor /
sminor varied between 1 and 1.3.

FIG. 5. Characterization of fit of mean effective stimulus profile by
generalized Gaussian surface for several ganglion cell classes. Stimulus
profile amplitude is plotted against fit amplitude for 8 representative classes.
For 7 of the 8 classes, plot closely approximates straight line with slope of
1 ( ) . Profiles of all cells in given class in retina were first normalized
by maximum amplitude of their Gaussian fit. Individual plots of profile vs.FIG. 4. Gaussian fit to spatial profile of ON BT cell’s mean effective

stimulus. A : mean effective stimulus at its peak 125 ms before spike. fit amplitude were combined and profile values (means { SE) were calcu-
lated for each 0.1-unit bin of fit amplitude. Each of the 8 plots was obtainedIntensity is plotted on Z-axis as function of distance on retina. Intensity

was normalized such that /1 and 01 correspond to high and low intensities from a different retina. Cell class, number of cells in each plot, and mean
stimulus intensity (Rh*rrod01rs01) , respectively: OFF BT, 3, 2.2; OFF BS,in checkerboard, average normalized intensity being 0. Mean intensity of

checkerboard: 1.7 Rh*rrod01rs01 . Squares are 100 mm wide. B : cross 5, 2.2; OFF delayed, 4, 0.66; LED, 7, 4.9; ON BT, 6, 0.66; ON BS, 3, 1.6;
ON sluggish, 3, 2.2; ON-OFF DS, 10, 1.6. Successive plots are displaced bysections through central region of mean stimulus profile in A, with experi-

mental points shown as circles and Gaussian fits as solid lines. 0.7 units along abscissa for clarity.
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DeVries, S. H., & Baylor, D. A. (1997). Mosaic Arrangement of Ganglion Cell Receptive Fields in Rabbit Retina. Journal of Neurophysiology, 78(4), 2048-2060. 









Hermann Grid

Hermann, L. (1870). Eine Erscheinung simultanen Contrastes. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 3, 13-15. 



Hermann Grid

Hermann, L. (1870). Eine Erscheinung simultanen Contrastes. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 3, 13-15. 



Enhanced Hermann Grid

Hermann, L. (1870). Eine Erscheinung simultanen Contrastes. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 3, 13-15. 



Perceptive Fields

Ransom-Hogg, A., & Spillmann, L. (1980). Perceptive field size in fovea and periphery of the 
light- and dark-adapted retina. Vision Research, 20(3), 221–228.



Perceptive Fields

Ransom-Hogg, A., & Spillmann, L. (1980). Perceptive field size in fovea and periphery of the 
light- and dark-adapted retina. Vision Research, 20(3), 221–228.



Akiyoshi Kitaoka 



Nice Theory, but…

Schiller, P. H., & Carvey, C. E. (2005). The Hermann grid illusion revisited. Perception, 34(11), 1375-1397. 



Schiller, P. H., & Carvey, C. E. (2005). The Hermann grid illusion revisited. Perception, 34(11), 1375-1397. 
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Optical Illusions

Optical illusions fascinate us, challenging our
default notion that what we see is real. They
demonstrate that all our perception is illusion, in

a sense – incoming sensory information is interpreted,
yielding the internal representation of the world.
Therefore, after our eyes have filtered the visual input we
need sound judgement of information in order to create
our inner reality: “Your senses then you’ll have to trust, /
They’ll let you see what’s true and just, / Should reason
keep your mind awake”.8

What is an optical illusion? “I know it when I see one”
could not be farther off the track – as the best illusions
are the ones where a discrepancy from reality is not ‘seen’
until one uses other modalities (eg. touch) or instru-
ments (rulers, light metres). And even when we know
that we are subject to an optical illusion, most illusory
percepts still persist – a phenomenon called cognitive
impenetrability.15 As Gregory9 aptly stated it “it is surpris-
ingly hard to define ‘illusion’ in a satisfactory way”.
According to the Merriam-Webster Online Collegiate
Dictionary, an illusion is 1. something that deceives or
misleads intellectually; 2. perception of something objec-
tively existing in such a way as to cause misinterpretation
of its actual nature.

Why study illusions? 
Is it only the playful child in scientists that drives them to
study optical illusions? To some degree, yes, but illusions
can also decide major sport events: referee judgements
probably are affected by the ‘flash lag effect’, eg. when
judging the spot where a tennis ball touched the ground.2

However, there are professional reasons as well: Optical
illusions are particularly good adaptations of our visual
system to standard viewing situations. These adaptations
are ‘hardwired’ into our brains, and thus can cause inap-
propriate interpretations of the visual scene. Hence illu-
sions can reveal mechanisms of perception.

There are also some clinical conditions in which optical
illusions play a major role, eg. organic psychoses, epileptic
aura and migraine. Another often overlooked21 disorder is
the Charles Bonnet syndrome:4 patients with a normal
cognitive status but reduced afferent sensory input due to
visual system pathology (eg. age-related macular degener-
ation) or with brainstem pathology6 experience visual hal-
lucinations of various sorts. Finally, from a visual scien-
tist’s point of view the Rorschach test17 is based on optical
illusions or more precisely on the phenomenon that our
brain is constantly looking for known patterns in random
structures with low information content, called pareidolia.

What is old, what is new? 
Some illusions are long known to mankind, eg. the water-
fall illusion was mentioned by Aristotle: after staring at a
waterfall for a couple of minutes neighbouring objects
seem to be shifting upwards. This was followed up by
Lucretius, Purkinje and Addams who coined the term
‘waterfall illusion’. Recent evidence suggests that this
motion aftereffect is not due to ‘fatigue’ but rather due to
a gain adjustment, an optimal adaptation to prevailing
conditions.18 The description of numerous illusions, in
particular geometric illusions, in the 19th century was fol-
lowed by striking new ones, many of which rely on com-
puter animation, in the last decade.

Classification
This abundance of illusions is hard to categorise, especial-
ly since many still lack a successful explanation. We will
use the following six phenomenological groups:

• Luminance and contrast
• Motion
• Geometric or angle illusions
• 3D interpretation: size constancy and impossible 

figures
• Cognitive/Gestalt effects
• Colour
and show examples of the first four. Many more examples of
illusions can be found at <http://www.michaelbach.de/ot>.

Luminance & Contrast
The ‘Hermann grid’ was discovered in 1870 by the physi-
ologist Ludimar Hermann.11 If you examine the left part
of Figure 1, you will notice faint grey patches at the inter-
sections of the white ‘streets’. These patches are not visible
when directly fixated.

For half a century this illusion was explained on the
basis of lateral inhibition;3 this assumes that we see the
world as our retinal ganglion cells encode and thereby
compress it. However, in most situations our visual cortex
undoes the retinal encoding by spatial integration to
approach a veridical luminance perception. A complete
explanation of the Hermann grid would have to include
why this mechanism fails here. Recently János Geier
showed that just a slight torsion of the grid lines abolish-
es the appearance of the grey patches (Figure 1, right
part), highlighting the additional role of cortical process-
ing, ie. orientation selective neurons.7

Motion
In Figure 212 the disks appear to expand slowly. It may take
a few seconds and exploring eye movements to appreciate
the effect – still, not everyone perceives this illusion.

The complete explanation of this illusion is not fully
established in spite of promising recent efforts.1,5,12

Prerequisites are: asymmetric luminance steps, eg. from
dark to dark-grey and white to light-grey and eye move-
ments. When they suddenly appear (= temporal modula-
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Figure 2: Kitaoka’s ‘Throwing cast nets’.



Equiluminant weaves create chromatic spots only in the pres-
ence of a bright or dark background. Schiller and Carvey (2005)
proposed a model based on the premises that orientation-selective
neurons play a central role in the Hermann grid illusory effect and
that lightness and darkness are the product of the relative activity
of neurons driven by the ON and the OFF systems. To account for
chromatic changes in the luminance of the background, Schiller
and Carvey suggest that ‘‘activating color-selective cells alone is
insufficient to produce the spots” and propose a model in which
spots arise when orientation-selective ON and OFF simple cells
are co-activated with color-selective simple cells. While we do
not necessarily want to tie our findings to responses of specific
cells, we agree that a co-activation model would account for many
of the results shown here, and note that such a model is consistent
with other accounts of color and orientation (for instance, Clifford
et al., 2003; Gegenfurtner & Kiper, 2003) and with models that di-
vide color processing into separate color and color contrast path-
ways (Shapiro, 2008).

However, we make two additional observations that expand
the co-activation model. First, we consider the achromatic
Hermann grid to be part of the same phenomenal class of equilu-
minant weaves. We make this classification based upon the fol-
lowing observations: (a) both equiluminant weaves and
Hermann grids have horizontal and vertical bars of equal lumi-
nance; (b) both Hermann grids and equiluminant weaves pro-
duce spots that are fragile relative to comparable spots
produced by luminance-based weaves; and (c) both Hermann
grids and equiluminant weaves produce spots that appear at
every intersection.

By connecting the achromatic Hermann grid to equiluminant
weaves, we are suggesting that if there is a class of ‘‘color-selective
simple cells,” as proposed by Schiller and Carvey, a subset of these
cells must also respond to achromatic stimuli. Color is defined by
the properties of hue, brightness, and saturation; hue and bright-
ness are often considered separate perceptual dimensions because
the visual system responds faster to achromatic modulation than
to equiluminant modulation (among other differences). However,
according to Liu and Wandell (2005), ‘‘candidate cortical regions
for color computation must respond well to signals in all color
dimensions (luminance and chromatic) to contain the full range
of color information.” Liu and Wandell’s results indicate that the

processes that respond to the appearance of light and dark might
be different from faster mechanisms that respond to luminance
modulation. This finding is consistent with other fMRI studies that
show that the ventral occipital lobe and dorsal occipital lobe en-
code both luminance and chromatic information (Engel, Zhang, &
Wandell, 1997; Kleinschmidt, Lee, Requardt, & Frahm, 1996). Liu
and Wandell (2005) suggest that the ventral occipital lobe has a
slower temporal response.

Second, luminance-mismatched weaves are resistant to a wide
range of stimulus variations that abolish spots in the equiluminant
weaves (including the Hermann grid). While we can see how a
model based on oriented simple cell responses (such as Schiller
& Carvey, 2005) can account for the disappearance of the spots
from the Hermann grid, it is not clear why the model does not pre-
dict the disappearance of the spots from the luminance-mis-
matched weaves as well. For example, while an oriented filter
model can account for the disappearance of the spots in the Her-
mann grid following changes in orientation (Fig. 9B), spatial scale
(Fig. 6B), or jags in the bar (Fig. 7B), why would the model not pre-
dict a disappearance to occur for the luminance-mismatched
weaves (Figs. 9, 6 and 7A)? The most telling of these examples is
shown in Fig. 9, in which the Hermann grid spots disappear when
the bars are wavy. The disappearance of the spots can be accounted
for by a simple cell model by showing that oriented detectors can-
not integrate over the length of the curvy line. However, the spots
remain when the wavy pattern is produced as a luminance-mis-
matched weave.

So, while orientation selectivity in the Hermann grid (such as
that shown by De Lafuente & Ruiz, 2004) is a fundamental observa-
tion for Schiller and Carvey’s inclusion of simple cells in their mod-
el, orientation selectivity does not seem to be evident when
luminance mismatches are present in the weaves. One explanation
for the resilience of the luminance-mismatched spots is that the
Hermann grid represents the limiting case of the weaves; this pos-
sibility was mentioned by Spillmann and Levine (1971), who sta-
ted, ‘‘It appears as though the original Hermann grid illusion
were just a liminal case among our observations” (p. 558). In this
account, the grids’ spots are simply weaker versions of the weaves’
spots; the perturbations shown in this paper eliminate the spots in
the Hermann grid but are not strong enough to eliminate spots in
the luminance-mismatched weaves.

Fig. 9. Patterns made up of wavy bars. (A) Weaves and (B) Hermann grid. The spots for the weaves are barely affected by the wavy pattern, but the spots for the Hermann grid
are nearly absent (see also Geier et al., 2004, 2008).

2128 K. Hamburger, A.G. Shapiro / Vision Research 49 (2009) 2121–2130
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analysis on the Kanisza illusion failed to reveal a main effect of
picture, F(1, 30) = 0.9, P = 0.35 (Fig. 4, Lower Left). In-
terestingly, the psychophysics supports the idea that the two
images differ only marginally in their perceived lightness, F(1,
30) = 4.6, P = 0.04. The analysis on the Pacman illusions re-
vealed a marginally significant main effect of picture, F(3, 90) =
2.71, P = 0.05. More importantly, when the two Pacman illu-
sions A and D were compared with their respective control
conditions, A-1 and D-1 (Fig. 1, Lower), as well as to each
other, Pacman D, which had received the highest lightness
ratings, differed significantly (P < 0.01) from both its control
figure and Pacman A. A repeated- measures ANOVA on the
psychophysics revealed a significant difference in the perceived
lightness of the images, F(3, 90) = 3.7, P = 0.01; as shown in
Fig. 4, Pacman D was rated the lightest and Pacman A the
image with the least lightness.

Discussion
The present findings show that illusions of brightness or lightness
can cause pupillary constrictions from an equiluminant baseline.
Importantly, the various versions of the illusions resulted in pu-
pillary constrictions in amounts proportional to their perceived
luminance, despite that the physical luminance remained un-
changed from one version to another. However, the Kanisza il-
lusion yielded no significant changes in pupillary diameter in two
separate experiments, which was consistent with its low degree of
subjective lightness.
That these illusions can result in pupillary constrictions is re-

markable, given that eye-catching stimuli typically produce a di-
lation of the eye pupil. In fact, a great deal of research has revealed
that pupil size visibly increases when viewing attention-grabbing

stimuli, despite constant illumination and no changes in ocular
accommodation (27, 28). These studies have led to the proposal
that an event-related increase of pupil size or dilation represents
a physiological marker of use of attentional resources (28–31). For
example, Einhäuser et al. (16) have shown that pupillary dilations
were phase locked to switches between conscious percepts of
bistable figures (e.g., the Necker cube). Thus, we would expect that
the presentation of our stimuli concomitantly caused a pupillary
dilation. If so, dilations would counteract to some extent the pu-
pillary constrictions due to the subjective perception of lightness/
brightness. The Asahi figure, being subjectively very bright, might
constitute a stimulus that is particularly powerful in provoking
a pupillary constriction over and above the presence of counter-
acting pupillary dilations due to attentional processes.
Because our stimuli were all equiluminant, any changes in pu-

pillary diameter could not be attributed to changes in mean lu-
minance of each whole image. The Kitaoka figures were obtained
by simply translating on screen the shape elements, so that the
Michelson contrast of these images clearly remained constant. It
could be argued, however, that local band-limited contrast did
change in these images, and this would result in different in-
cremental and decremental luminance changes from the local
background. If one takes into consideration also that the fovea and
its surrounding area, approximately extending up to 10° of visual
angle (26), contributes more than the rest of the retinal field to the
pupillary response to luminance (25), then depending on which
region of the image the observers fixate, different levels of local
contrast would stimulate the central regions of the retina. Indeed,
pupillometric studies in humans and monkeys have shown that
small pupillary constrictions can be reliably measured also to
changes in local contrast, color content, and spatial frequency of

Fig. 3. Mean pupillary diameter in millimeters over time in milliseconds (time 0 = image onset) for the two images causing the smallest and the largest
pupillary changes. Note that, in all cases, the smallest pupillary diameters occurred when viewing the original illusions.
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SD = 0.19). Fig. 2 Upper Right illustrates the mean pupillary
change for each version over the whole recording period. Be-
cause we had predicted that the subjectively brighter pictures
should cause greater constrictions than less bright pictures, we
directly tested with a paired t test the pupillary responses to the
original picture (A) that was ranked as brightest by our in-
dependent judges against picture D. This comparison revealed
that constrictions to picture A were, in fact, greater than those to
picture D, t(14) = 2.9, P = 0.011.
The analysis on the Kanisza illusion failed to reveal a main effect

of picture, F(3, 42) = 0.8, P = 0.51. On average, the pupils
appear to slightly dilate from baseline (Fig. 2, Lower Left, and
Fig. 3). In contrast, the analysis on the Pacman illusion revealed
a main effect of picture, F(3, 42) = 6.2, P = 0.001. We expected
that the illusory triangular shape should appear as progressively
lighter from picture A to picture D and indeed, we observed
progressively smaller pupil diameters (Fig. 2, Lower Right).
According to post hoc Student–Newman–Keuls tests, pupils
were smaller for picture D (mean change = 0.005 mm; SD =
0.180) than for A (mean difference = 0.15; critical difference =
0.11), as well as pictures B (mean difference = 0.12; critical
difference = 0.10) and C (mean difference = 0.11; critical dif-
ference = 0.09). Fig. 3 Lower shows the pupillary change time
course over the recording period.
Finally, we analyzed eye movement data by obtaining an av-

erage count of the number of saccades that occurred over all
versions of the illusions. These data were collapsed and analyzed
by ANOVA with illusions (Asahi, Cubes, Kanisza, Pacman) as
the independent variable. The analysis showed a significant ef-
fect, F(3, 51) = 32.5, P < 0.0001, and paired t tests revealed that
the cubes figures [5.3 < t(16) < 10.1] provoked the largest
number of saccades (mean = 12.4; SD = 0.9) compared with all
other figures (Asahi: mean = 10.2; SD = 0.8; Kanisza: mean =
10.9; SD = 1.1; Pacman: mean = 9.9; SD = 0.4).

Experiment 2. It is known that the fovea and its immediately
surrounding area can contribute more than the rest of the retinal
field to the pupillary response to luminance (25, 26). Thus, in
a second experiment, we asked a new group of participants to
maintain fixations at the center of the screen. Only those two
versions of each illusion that in the previous experiment had
produced maximum and minimum pupillary changes were in-
cluded. To demonstrate that the present effects occur rapidly, and
to make sure that these effects are not dependent from the
presence of eye movements, we recorded pupillary changes only
within the first 300 ms from each illusion’s onset. We also created
two control conditions for one of the Kanisza illusions in which
the Pacmen inducing the illusory surface were rotated, so as to
eliminate the perception of the surface and with it of its increased
lightness while maintaining unchanged the physical luminance of
the images. Finally, we measured the psychometric function for
each participant’s perceived lightness/brightness in a separate
session, where these same participants were asked to indicate
which of two adjacent pictures was perceived as stronger in lu-
minance for all variants within each class of illusion. This pro-
cedure establishes a relative probabilistic function for each
comparison. Fig. 4 shows the mean ratings for each illusion based
on this function side by side to the changes in pupillary diameters.
The analysis on the Asahi illusion revealed a main effect of

picture, F(1, 30) = 7.5, P < 0.01. The original illusion (A) caused
a larger pupillary constriction (mean change = −0.412 mm;
SD = 0.26) compared with picture D (mean change = −0.322 mm;
SD = 0.21). The analyses on ratings confirmed that Asahi A was
rated as significantly brighter than D, F(1, 30) = 18.7, P < 0.0002
(Fig. 4, Upper Left). Similarly, for the light of cubes illusion, there
were significantly larger constrictions, F(1, 30) = 18.1, P < 0.0002
(Fig. 4, Upper Right), for the original illusion A (mean change =
−0.49 mm; SD = 0.24) than for version C (mean change = −0.304
mm; SD = 0.26). As found also in the previous experiment, the

Fig. 2. Changes in mean pupil diameters (in mm) for each of the four types of illusions, averaged over a 4-s epoch from onset. Bars indicate SEs.
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We Don’t See the Stimulus

• We see the result of neural/perceptual processes
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Brain Networks, circa 2016 
Lots of fluctuating activity in the normal brain

Raichle, M. E. (2015). The restless brain: how intrinsic activity organizes brain function. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370(1668). 

cognitive neuroscience. This approach, in various forms, has
dominated the cognitive neuroscience agenda ever since with
remarkably productive results (e.g. [34]).

One of the guiding principles of cognitive psychology was
that a control state must explicitly contain all of the elements
of the associated task state other than the one element of interest
(e.g. seeing a word versus reading the same word). Using a con-
trol state of rest would clearly seem to violate that principle.
Despite our commitment to the strategies of cognitive psychol-
ogy in our experiments we routinely obtained resting state
scans in all of our experiments, which was a carry-over habit
from experiments involving simple sensory stimuli [35]
where the control state was simply the absence of the stimulus
(i.e. a resting state2). At some point in our work, and I do not
recall the motivation, I began to look at the resting state scans
minus the task scans. What immediately caught my attention
was the fact that regardless of the task under investigation,
activity decreases were clearly present and almost always
included the posterior cingulate and the adjacent precuneus
(figure 1a). Initially puzzled by the meaning of this observation,
I began collecting examples from our work and placed them in a
folder which I labelled MMPA for mystery medial parietal area.

The first formal characterization of task-induced activity
decreases from a resting state was a meta-analysis of nine
PET studies involving 134 subjects by my colleague Gordon
Shulman [38]. This study generated an iconic image of a net-
work of cortical areas that decreased their activity during the
performance of a variety of attention-demanding, largely
non-self-referential tasks (figure 1a). The unique identity of
this network was confirmed a short time later by others
[39,40] with similar observations which are now an everyday
occurrence in laboratories worldwide as investigators seek to
understand its role in brain function. This network has been
dubbed the brain’s default mode network (DMN) by Greicius

et al. [41] after our formal description of its unique features
[42]. Subsequent work by us and others (summarized in
[43]) has established the DMN as an important functional
component of the intrinsic activity of the human brain as
well as in non-human primates [44] and rodents [45,46].

It should be noted that other more task-specific deactiva-
tions had been noted by us and others [47–53], consistent
with our more general idea that a default mode of brain func-
tion [42,54] is broadly based across all brain systems (a
hypothesis that was to receive substantial support from
functional studies of the brain’s resting state2 [36,37]).

The discovery of the DMN made apparent the need for
additional ways to study the large-scale intrinsic, functional
organization of the brain. A major step forward was the dis-
covery that this large-scale network organization, including
but not limited to the DMN, could be revealed by the
study of patterns of spatial coherence in the spontaneous
fluctuations (i.e. noise) of the fMRI blood-oxygen level
dependent (BOLD) signal.

(b) Top – down view: spontaneous fluctuation
in the fMRI signal

A prominent feature of fMRI is the noise in the raw, resting state
BOLD signal (figure 1b). For many years, this prompted
researchers to average their data to increase signal and reduce
noise. As first shown by Biswal et al. [55] in the human somato-
motor system, this ‘noise’ exhibits strong patterns of coherence
within well-known brain systems.

The significance of this observation was brought forcefully
to our attention when Greicius et al. [41] looked at the patterns
of coherence in the DMN elicited by placing a region of interest
in either the posterior cingulate cortex (yellow arrow, figure 1a)
or the ventral medial prefrontal cortex (orange arrow, figure 1a).
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Figure 1. Performance of a wide variety of tasks has called attention to a group of brain areas (a) that decrease their activity during task performance. These areas are
often referred to as the brain’s default mode network (DMN). If one records the spontaneous fMRI BOLD signal activity in these areas in the resting state (arrows, a) what
emerges is a remarkable similarity in the behaviour of the signals between areas (b). Using these fluctuations to analyse the network as a whole reveals a level of
functional organization in the ongoing intrinsic activity of the brain (c) that parallels that seen in the task-related activity decreases (a). Analyses of other brain systems
(d ) reveal similar levels of functional organization that exist in concert with their subcortical connections (not shown). Elements of this figure were adapted from [36,37]
with permission.
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cognitive neuroscience. This approach, in various forms, has
dominated the cognitive neuroscience agenda ever since with
remarkably productive results (e.g. [34]).

One of the guiding principles of cognitive psychology was
that a control state must explicitly contain all of the elements
of the associated task state other than the one element of interest
(e.g. seeing a word versus reading the same word). Using a con-
trol state of rest would clearly seem to violate that principle.
Despite our commitment to the strategies of cognitive psychol-
ogy in our experiments we routinely obtained resting state
scans in all of our experiments, which was a carry-over habit
from experiments involving simple sensory stimuli [35]
where the control state was simply the absence of the stimulus
(i.e. a resting state2). At some point in our work, and I do not
recall the motivation, I began to look at the resting state scans
minus the task scans. What immediately caught my attention
was the fact that regardless of the task under investigation,
activity decreases were clearly present and almost always
included the posterior cingulate and the adjacent precuneus
(figure 1a). Initially puzzled by the meaning of this observation,
I began collecting examples from our work and placed them in a
folder which I labelled MMPA for mystery medial parietal area.

The first formal characterization of task-induced activity
decreases from a resting state was a meta-analysis of nine
PET studies involving 134 subjects by my colleague Gordon
Shulman [38]. This study generated an iconic image of a net-
work of cortical areas that decreased their activity during the
performance of a variety of attention-demanding, largely
non-self-referential tasks (figure 1a). The unique identity of
this network was confirmed a short time later by others
[39,40] with similar observations which are now an everyday
occurrence in laboratories worldwide as investigators seek to
understand its role in brain function. This network has been
dubbed the brain’s default mode network (DMN) by Greicius

et al. [41] after our formal description of its unique features
[42]. Subsequent work by us and others (summarized in
[43]) has established the DMN as an important functional
component of the intrinsic activity of the human brain as
well as in non-human primates [44] and rodents [45,46].

It should be noted that other more task-specific deactiva-
tions had been noted by us and others [47–53], consistent
with our more general idea that a default mode of brain func-
tion [42,54] is broadly based across all brain systems (a
hypothesis that was to receive substantial support from
functional studies of the brain’s resting state2 [36,37]).

The discovery of the DMN made apparent the need for
additional ways to study the large-scale intrinsic, functional
organization of the brain. A major step forward was the dis-
covery that this large-scale network organization, including
but not limited to the DMN, could be revealed by the
study of patterns of spatial coherence in the spontaneous
fluctuations (i.e. noise) of the fMRI blood-oxygen level
dependent (BOLD) signal.

(b) Top – down view: spontaneous fluctuation
in the fMRI signal

A prominent feature of fMRI is the noise in the raw, resting state
BOLD signal (figure 1b). For many years, this prompted
researchers to average their data to increase signal and reduce
noise. As first shown by Biswal et al. [55] in the human somato-
motor system, this ‘noise’ exhibits strong patterns of coherence
within well-known brain systems.

The significance of this observation was brought forcefully
to our attention when Greicius et al. [41] looked at the patterns
of coherence in the DMN elicited by placing a region of interest
in either the posterior cingulate cortex (yellow arrow, figure 1a)
or the ventral medial prefrontal cortex (orange arrow, figure 1a).
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Figure 1. Performance of a wide variety of tasks has called attention to a group of brain areas (a) that decrease their activity during task performance. These areas are
often referred to as the brain’s default mode network (DMN). If one records the spontaneous fMRI BOLD signal activity in these areas in the resting state (arrows, a) what
emerges is a remarkable similarity in the behaviour of the signals between areas (b). Using these fluctuations to analyse the network as a whole reveals a level of
functional organization in the ongoing intrinsic activity of the brain (c) that parallels that seen in the task-related activity decreases (a). Analyses of other brain systems
(d ) reveal similar levels of functional organization that exist in concert with their subcortical connections (not shown). Elements of this figure were adapted from [36,37]
with permission.
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Activity is Suppressed when Doing Tasks
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cognitive neuroscience. This approach, in various forms, has
dominated the cognitive neuroscience agenda ever since with
remarkably productive results (e.g. [34]).

One of the guiding principles of cognitive psychology was
that a control state must explicitly contain all of the elements
of the associated task state other than the one element of interest
(e.g. seeing a word versus reading the same word). Using a con-
trol state of rest would clearly seem to violate that principle.
Despite our commitment to the strategies of cognitive psychol-
ogy in our experiments we routinely obtained resting state
scans in all of our experiments, which was a carry-over habit
from experiments involving simple sensory stimuli [35]
where the control state was simply the absence of the stimulus
(i.e. a resting state2). At some point in our work, and I do not
recall the motivation, I began to look at the resting state scans
minus the task scans. What immediately caught my attention
was the fact that regardless of the task under investigation,
activity decreases were clearly present and almost always
included the posterior cingulate and the adjacent precuneus
(figure 1a). Initially puzzled by the meaning of this observation,
I began collecting examples from our work and placed them in a
folder which I labelled MMPA for mystery medial parietal area.

The first formal characterization of task-induced activity
decreases from a resting state was a meta-analysis of nine
PET studies involving 134 subjects by my colleague Gordon
Shulman [38]. This study generated an iconic image of a net-
work of cortical areas that decreased their activity during the
performance of a variety of attention-demanding, largely
non-self-referential tasks (figure 1a). The unique identity of
this network was confirmed a short time later by others
[39,40] with similar observations which are now an everyday
occurrence in laboratories worldwide as investigators seek to
understand its role in brain function. This network has been
dubbed the brain’s default mode network (DMN) by Greicius

et al. [41] after our formal description of its unique features
[42]. Subsequent work by us and others (summarized in
[43]) has established the DMN as an important functional
component of the intrinsic activity of the human brain as
well as in non-human primates [44] and rodents [45,46].

It should be noted that other more task-specific deactiva-
tions had been noted by us and others [47–53], consistent
with our more general idea that a default mode of brain func-
tion [42,54] is broadly based across all brain systems (a
hypothesis that was to receive substantial support from
functional studies of the brain’s resting state2 [36,37]).

The discovery of the DMN made apparent the need for
additional ways to study the large-scale intrinsic, functional
organization of the brain. A major step forward was the dis-
covery that this large-scale network organization, including
but not limited to the DMN, could be revealed by the
study of patterns of spatial coherence in the spontaneous
fluctuations (i.e. noise) of the fMRI blood-oxygen level
dependent (BOLD) signal.

(b) Top – down view: spontaneous fluctuation
in the fMRI signal

A prominent feature of fMRI is the noise in the raw, resting state
BOLD signal (figure 1b). For many years, this prompted
researchers to average their data to increase signal and reduce
noise. As first shown by Biswal et al. [55] in the human somato-
motor system, this ‘noise’ exhibits strong patterns of coherence
within well-known brain systems.

The significance of this observation was brought forcefully
to our attention when Greicius et al. [41] looked at the patterns
of coherence in the DMN elicited by placing a region of interest
in either the posterior cingulate cortex (yellow arrow, figure 1a)
or the ventral medial prefrontal cortex (orange arrow, figure 1a).
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Figure 1. Performance of a wide variety of tasks has called attention to a group of brain areas (a) that decrease their activity during task performance. These areas are
often referred to as the brain’s default mode network (DMN). If one records the spontaneous fMRI BOLD signal activity in these areas in the resting state (arrows, a) what
emerges is a remarkable similarity in the behaviour of the signals between areas (b). Using these fluctuations to analyse the network as a whole reveals a level of
functional organization in the ongoing intrinsic activity of the brain (c) that parallels that seen in the task-related activity decreases (a). Analyses of other brain systems
(d ) reveal similar levels of functional organization that exist in concert with their subcortical connections (not shown). Elements of this figure were adapted from [36,37]
with permission.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140172

3

 on January 22, 2016http://rstb.royalsocietypublishing.org/Downloaded from 



Brain Networks, circa 2016 
Multiple Networks 

Raichle, M. E. (2015). The restless brain: how intrinsic activity organizes brain function. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370(1668). 

cognitive neuroscience. This approach, in various forms, has
dominated the cognitive neuroscience agenda ever since with
remarkably productive results (e.g. [34]).

One of the guiding principles of cognitive psychology was
that a control state must explicitly contain all of the elements
of the associated task state other than the one element of interest
(e.g. seeing a word versus reading the same word). Using a con-
trol state of rest would clearly seem to violate that principle.
Despite our commitment to the strategies of cognitive psychol-
ogy in our experiments we routinely obtained resting state
scans in all of our experiments, which was a carry-over habit
from experiments involving simple sensory stimuli [35]
where the control state was simply the absence of the stimulus
(i.e. a resting state2). At some point in our work, and I do not
recall the motivation, I began to look at the resting state scans
minus the task scans. What immediately caught my attention
was the fact that regardless of the task under investigation,
activity decreases were clearly present and almost always
included the posterior cingulate and the adjacent precuneus
(figure 1a). Initially puzzled by the meaning of this observation,
I began collecting examples from our work and placed them in a
folder which I labelled MMPA for mystery medial parietal area.

The first formal characterization of task-induced activity
decreases from a resting state was a meta-analysis of nine
PET studies involving 134 subjects by my colleague Gordon
Shulman [38]. This study generated an iconic image of a net-
work of cortical areas that decreased their activity during the
performance of a variety of attention-demanding, largely
non-self-referential tasks (figure 1a). The unique identity of
this network was confirmed a short time later by others
[39,40] with similar observations which are now an everyday
occurrence in laboratories worldwide as investigators seek to
understand its role in brain function. This network has been
dubbed the brain’s default mode network (DMN) by Greicius

et al. [41] after our formal description of its unique features
[42]. Subsequent work by us and others (summarized in
[43]) has established the DMN as an important functional
component of the intrinsic activity of the human brain as
well as in non-human primates [44] and rodents [45,46].

It should be noted that other more task-specific deactiva-
tions had been noted by us and others [47–53], consistent
with our more general idea that a default mode of brain func-
tion [42,54] is broadly based across all brain systems (a
hypothesis that was to receive substantial support from
functional studies of the brain’s resting state2 [36,37]).

The discovery of the DMN made apparent the need for
additional ways to study the large-scale intrinsic, functional
organization of the brain. A major step forward was the dis-
covery that this large-scale network organization, including
but not limited to the DMN, could be revealed by the
study of patterns of spatial coherence in the spontaneous
fluctuations (i.e. noise) of the fMRI blood-oxygen level
dependent (BOLD) signal.

(b) Top – down view: spontaneous fluctuation
in the fMRI signal

A prominent feature of fMRI is the noise in the raw, resting state
BOLD signal (figure 1b). For many years, this prompted
researchers to average their data to increase signal and reduce
noise. As first shown by Biswal et al. [55] in the human somato-
motor system, this ‘noise’ exhibits strong patterns of coherence
within well-known brain systems.

The significance of this observation was brought forcefully
to our attention when Greicius et al. [41] looked at the patterns
of coherence in the DMN elicited by placing a region of interest
in either the posterior cingulate cortex (yellow arrow, figure 1a)
or the ventral medial prefrontal cortex (orange arrow, figure 1a).
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Figure 1. Performance of a wide variety of tasks has called attention to a group of brain areas (a) that decrease their activity during task performance. These areas are
often referred to as the brain’s default mode network (DMN). If one records the spontaneous fMRI BOLD signal activity in these areas in the resting state (arrows, a) what
emerges is a remarkable similarity in the behaviour of the signals between areas (b). Using these fluctuations to analyse the network as a whole reveals a level of
functional organization in the ongoing intrinsic activity of the brain (c) that parallels that seen in the task-related activity decreases (a). Analyses of other brain systems
(d ) reveal similar levels of functional organization that exist in concert with their subcortical connections (not shown). Elements of this figure were adapted from [36,37]
with permission.
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• Component Dominant 
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• Emergent Properties



Interaction Organization

Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453-458.
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Distributed Properties



Retinotopic Mapping

• Retina to LGN to Cortex 

• Nonlinear 

• Cortical Magnification Factor: M = mmCortex / mmRetina 

• M = Around 11-13 in Fovea





Lateral Geniculate Nucleus

• Parvocellular 

• Magnocellular 

• Koniocellular



Lateral Geniculate Nucleus
• Parvocellular 

• high spatial resolution 

• color vision 

• Magnocellular 

• low spatial resolution 

• high temporal res. 

• Koniocellular 

• high spatial resolution 

• color vision
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Functional Significance

• Selective Damage 

• Complex Logarithmic Mapping 

• Orientation vs Spatial Frequency



Binocular Visual Field
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Visual Field Scotoma: A-178



Visual Field Scotoma: A-178
Visual Field Scotoma: A-178



Homonymous Hemianopia: A-67
Visual Field Scotoma: A-67



Foveal Sparing: A-29



Hemidecussation of the Retina

Stone, J., Leicester, J., & Sherman, S. M. (1973). The naso‐temporal division of the monkey's retina. Journal of Comparative Neurology, 150(3), 333-348. doi:10.1002/cne.901500306
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Figs. 4A.B Foveal regions of the retinas of figure 3A,B respectively, at higher magnifica- 
tion. In each retina the arrow points to the optic disc. 

Ophthalmoscopic and post-mortem 
appearance of the fundus  

Ophthalmoscopically the only suggestion 
of abnormality was a sheen on the areas of 
retina from which ganglion cells had de- 
generated. This was more apparent in the 
right retina, in which the temporal half of 
the retina was affected. The area of sheen 
appeared to include the lateral margin of 
the fovea. 

When the eye was opened post-mortem 
clear indication of the pattern of ganglion 
cell degeneration was apparent, even be- 
fore staining (fig. lo ) .  The retina appeared 
“milky” and opaque where i t  was normal, 
and was more transparent, making the 
fundus appear darker, where the ganglion 
cells had degenerated. The impression was 
gained that the relative transparency of 
the retinal areas affected by degeneration 

is due to the absence of axon bundles 
from such areas. In  the right retina (fig. 
10A)  the fibre bundles form a continuous 
layer of axons as they converge on the 
optic disc, as in the normal retina, hut the 
bundles begin to form only nasal to the 
fovea. A clear line between normal (nasal) 
and degenerated (temporal) areas of 
retina is apparent for 2-3 mm above and 
below the fovea. In the left retina (fig. 
lOB) ,  the axon bundles all arise from 
ganglion cells in temporal retina and form 
two arcuate streams which course above 
and below the disc-fovea line. A clear line 
between normal (temporal) and degener- 
ated (nasal) areas of retina is apparent 
for only about 1 mm above and below the 
fovea. Further up and down axon bundles 
cross the line, obscuring it. The same effect 
is seen in  the stained retina (fig. 3B) ,  be- 
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Measuring Left & Right RTSINGLE REPRESENTAIXON OF THE VISUAL MIDLINE IN HUMANS 603 

Fuaticn 

Fixatiin Pattern 

Left Right 

Cerebral 

Hemispheres 

Fro. 1. A schematic representation of the experimental paradigm illustrating the difference 

between crossed and uncrossed response situations. Insert: the configuration of the fixation 

pattern. 

visual stimulus, the difference in RT is about 3 msec [15]. For tasks more complicated than 

simple reaction time, the difference between crossed and uncrossed responding increases 

(e.g. choice reaction time [16]). Since RT differences to stimulus material presented to the 

left and right visual fields have become an important experimental paradigm in inferring 

processing differences between the left and right cerebral hemispheres in both split brain 

patients [17-191 and in normals [20-231, I felt that it was important to learn how stimulation 

within the retinal region projecting to both hemispheres affected RT. 

The experiment was based on the following reasoning. In a choice reaction time experi- 

ment, in which a visual target appears either to the left or to the right of the fixation point 

and the subject has to respond by pushing one of two keys to indicate that the target was 

to the left or to the right of the fixation point using either the left or the right hand, an RT 

difference between crossed and uncrossed responding will be found when the target images 

fall on regions of the retina that project to only one cerebral hemisphere. When the target 

is presented close enough to the visual midline that it falls on regions projecting to both 

hemispheres, the RT difference between crossed and uncrossed responding should disappear, 

since both hands will have equal access to the information. By systematically varying the 

retinal locus of the target, I hoped to map the region of dual representation. 

Subjects 

METHOD 

Four subjects participated in the present experiment. Two, a male (the author), age 33, and a female, age 
36, were highly trained in experimental tasks of this type and were not naive about the purposes of the 
experiment. The other two, females age. 36 and 20, naive about the experiment, were paid volunteers who 

Harvey, L. O., Jr. (1978). Single representation of the visual midline in humans. Neuropsychologia, 16(5), 601610. 



Left and Right RT
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RESULTS 

Each of the RTs in msec was converted into base 10 logarithm in order to reduce the 

skewness inherent in reaction time data. The log transformed RTs were then analyzed in a 

2 x 10 x 2 x 2 x2 x 25 x 4 subjects analysis of variance. The geometric mean reaction times 

for the four subjects are plotted in Fig. 2 as a function of retinal locus for left and right 

visual field presentation while responding with the left and right hands. Figure 2 shows that 

420 
1’1’1’1 I I’ I ’ 1 ’ 

I 
I 

Left Hand 

&Ti 

Left Visu~ Field 
1 2 3 4 

Right Visual Field 

Degrees from Fovea 

FIG. 2. Geometric mean of reaction time in msec for four subjects as a function of retinal 
locus in the left and right visual fields. O---- 0 responding with right hand; 0 -0 

responding with left hand. 

reaction time increased with increasing retinal locus, a finding in agreement with the in- 

creasing loss of detection sensitivity found in the peripheral retina [29]. The factor of 

retinal locus was significant in the ANOVA (F [9,27] = 8.47, P < 0.0001). The factors of 

eye, hand and visual field were not statistically sign&ant. In the present experiment, it is 

the interaction between responding hand and visual field that is of greatest interest. Figure 2 

shows this interaction. When the stimulus target is presented in the left visual field of either 

eye, the left hand responds faster than the right hand. This left hand superiority is main- 

tained at all retinal loci, and averaged 17.6 msec for the four subjects. The situation is 

completely reversed for stimulus presentations in the right visual field of either eye. It is 

now the right hand that responds faster (32.9 msec on the average) than the left hand at all 

retinal loci. It is important to note that this difference between the hands is maintained 

even at the retinal locus closest to the hation point. 

The data are presented in a different manner by averaging the reaction times for the 

left hand-left visual field and right hand-right visual field (uncrossed responding) and by 

averaging the reaction times for the left hand-right visual field and the right hand-left 

visual field (crossed responding) and plotting the data as a function of retinal locus. Figure 3 

presents the individual data for each of the four subjects and Fig. 4 presents the mean of 

the four subjects. The average differences between crossed and uncrossed responding for 

the four subjects (Fig. 3) and for the mean data (Fig. 4) are given in Table 1. The appropriate 

statistical test of the difference between crossed and uncrossed would be the Hand x Visual 

Field interaction terms of the ANOVA. Although this F-ratio (F [l, 31 = 7.50) was second 

only in size to Retinal Locus main effects, its significance level (P = 0.07) was not so high 

due to the low degree of freedom associated with four subjects. Two other approaches were 
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Fro. 3. Geometric mean of reaction time in msec for each subject separately as a function of 
distance from the fixation point in degrees of visual angle. ! - 0 crossed responding; 
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Table 1. Mean reaction times, in msec, for crossed and uncrossed responding for each 
subject and for the group means 

Responding 
Crossed Uncrossed Difference 

Subject 1 328.85 321.74 7.11 
Subject 2 458.67 400.87 57.80 
Subject 3 430.53 411.15 19.38 
Subject 4 382.82 371.54 25.19 
Mean 396.73 371.54 25.19 
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Orientation Tuning in Cortex
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Orientation Tuning in Area 17
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Receptive Fields in Cortex

12 MinutesColin Blakemore



Effect of Experience
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Shifts of Attention

Lauritzen, T. Z., D’Esposito, M., Heeger, D. J., & Silver, M. A. (2009). Top–down flow of visual spatial attention 
signals from parietal to occipital cortex. Journal of Vision, 9(13). doi: 10.1167/9.13.18



Shifts of Attention

network. In particular, the attention-specific functional
connectivity data are consistent with a top–down flow of
attention signals from IPS1 and IPS2 to visual cortical areas
with inter-areal latencies of a few hundred milliseconds.

Discussion

Our results show that sustained visual spatial attention
in the absence of visual stimulation is accompanied by
widespread increases in coherency magnitude for many
pairs of parietal and occipital cortical areas and that
attention-related activity in IPS1 and IPS2 leads that in the
visual cortex by a few hundred milliseconds. These
findings imply a top–down flow of information from
IPS1 and IPS2 to earlier areas in the visual cortical
processing hierarchy during sustained attention and sup-
port the hypothesis that IPS1 and IPS2 transmit attention
signals from higher brain areas to visual cortex.

Possible neural substrates of attention-
related functional connectivity

The observed effects of attention on functional connec-
tivity could be due to three distinct (though not mutually

exclusive) neural mechanisms. First, the measured coher-
ency magnitude and phase differences might reflect
ongoing neural interactions between cortical areas through-
out the period of sustained attention. Spatially selective and
persistent increases in fMRI responses during sustained
attention in the absence of visual stimulation have been
found in early visual cortex (Kastner et al., 1999; Silver et
al., 2007) and in IPS1 and IPS2 (Supplementary Figure 2).
Similar results were obtained with magnetoencephalo-
graphic (MEG) measures of visual spatial attention in the
absence of sensory stimulation in human visual and
parietal cortex (Siegel, Donner, Oostenveld, Fries, &
Engel, 2008). If these responses in visual cortex are
driven by sustained inputs from IPS1 and IPS2, this would
result in a sustained (ongoing) increase in functional
connectivity between parietal and visual cortical areas. In
support of this conjecture, sustained attention caused
persistent increases in coherency magnitude (in the 10-
to 35-Hz frequency band) between parietal and visual
cortex in monkey local field potential (LFP) recordings
(Saalman, Pigarev, & Vidyasagar, 2007). Although this is
a much higher frequency range than that measured with
fMRI in the current study, we summarize evidence below
for a link between low-frequency fMRI fluctuations and
gamma band oscillations.
Second, the timing of activity at the onset of a period of

sustained attention might differ between cortical areas.
Given the sluggishness of the hemodynamics, even a
transient change in neural activity will continue to
influence the fMRI time series for many seconds, a time
scale commensurate with the durations of sustained
attention in our experiment. Much longer epochs of
sustained attention and fixation would be required to
definitively separate fMRI measurements of transient and
sustained changes in functional connectivity associated
with top–down visual spatial attention.
Third, attention might accelerate the feedforward pro-

gression of neural signals through the visual processing
hierarchy. We found that attention-related activity in IPS1
and IPS2 leads that in early visual cortical areas by a few
hundred milliseconds. However, this result was only
obtained when the coherency values associated with
fixation were subtracted from those associated with
sustained attention. Before this subtraction, V1, V2, and
V3 led higher order areas by a few hundred milliseconds
both for fixation (Figure 4D) and attention (Figure 4E),
consistent with a feedforward progression of activity
during both task conditions. Subtraction of coherency
phase values associated with fixation from the correspond-
ing attention values resulted in negative phase differences
for many pairs of areas (Figure 4F). This is consistent with
a model in which attention accelerates feedforward
processing relative to fixation. This model also receives
support from magnetoencephalographic (MEG) experi-
ments in which the latency of visual responses is reduced
when stimuli are attended (Noguchi, Tanabe, Sadato,
Hoshiyama, & Kakigi, 2007).

Figure 5. Temporal differences in attention-related activity for pairs
of cortical areas. Arrows indicate significant differences in func-
tional connectivity between attention and fixation. Black arrows
represent top–down flow of attention signals, and the gray arrow
indicates a bottom–up relationship between V2 and V3.

Journal of Vision (2009) 9(13):18, 1–14 Lauritzen, D’Esposito, Heeger, & Silver 9

Lauritzen, T. Z., D’Esposito, M., Heeger, D. J., & Silver, M. A. (2009). Top–down flow of visual spatial attention 
signals from parietal to occipital cortex. Journal of Vision, 9(13). doi: 10.1167/9.13.18
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Spatial Vision and the Contrast 
Sensitivity Function



Spatial Vision

• Detecting Contrast 

• Detecting Orientation



Fourier Transform
Transform space or time into frequency



What is a Transform?

• A rule or set of rules for turning one set 
of numbers into another set of numbers 

• Many transforms are reversible 
• Some transforms are not reversible

N log N

1 0

2 0.301

3 0.4771

4 0.6021

5 0.699

6 0.7782

7 0.8451

8 0.9031



Why Transform?
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Jean Baptiste Joseph Fourier

• Born: 
• 21 March 1768, Auxerre, France 

• Died: 
• 16 May 1830, Paris, France



The Fourier Transform 
On the Propagation of Heat in Solid Bodies (1807)

t h(t)

0 0

1 1.75

2 0.15

3 -0.14

4 0.23

5 -1.5

6 -0.82

7 1.65

f H(f)

0 1.33, 0.00i

1 3.33,-2.01i

2 0.90,1.26i

3 -3.80,-0.07i

4 -2.19,0.00i

-3 -3.80,0.07i

-2 0.90,-1.26i

-1 3.33,2.01i

H f( ) = h t( ) ⋅B f ,t( )
t=0

N−1

∑



The Fourier Transform

• B(f,t) is called a basis function 

• For the Fourier transform 

• Basis function is a complex 
exponential function

H f( ) = h t( ) ⋅B f ,t( )
t=0

N−1

∑
t = time
f = frequency

BasisFunction = e− i⋅2π ⋅t⋅ f

i = −1



Leonhard Euler

• Born: 
• 15 April 1707, Basel, Switzerland 

• Died: 
• 18 Sept 1783, St. Petersburg, Russia



Leonhard Euler (1707–1783)

� 

ei x = cos x( ) + i sin x( )

Worked out the relationship between 
exponential functions and trigonometric functions



Leonhard Euler (1707–1783)

The most beautiful equation in the world:

eiπ = −1



Leonhard Euler (1707–1783)

The most beautiful equation in the world:

eiπ = −1
e irrational and transcendental( )
π irrational and transcendental( )
i imaginary number( )



Leonhard Euler (1707–1783)

The most beautiful equation in the world:

eiπ = −1
e irrational and transcendental( )
π irrational and transcendental( )
i imaginary number( )
eix = cos x( )+ isin x( )
eiπ = cos π( )+ isin π( )



Leonhard Euler (1707–1783)

The most beautiful equation in the world:

cos π( ) = −1
sin π( ) = 0
eiπ = cos π( )+ isin π( )
eiπ = −1+ i ⋅0
eiπ = −1
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Spatial Frequencies: Gabor Patches

Low Med Low Med High High



Visual Angle



Visual Angle



Cycles per Degree

• Distance of pattern from the observer in inches = d 

• Resolution of computer screen in pixels/inch = r 

• Number of pixels per degree = 180 / pi * d * r 

• Number of sine cycles in ppd is the number of cycles per degree



Contrast Sensitivity

• The visual system is not equally sensitive to all spatial frequencies. 

• Less sensitive to both low and high spatial frequencies



Contrast Sensitivity Function



Adaptation Paradigm
Spatial frequency mechanisms



Contrast =
Lmax − Lmin( )
Lmax + Lmin( )

Contrast varies between 0 and 1

Lmax

Lmin

Threshold Contrast = Ct

Contrast Sensitivity = 1
Ct
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CSFs of Various Animals

de Valois, R. L., & de Valois, K. K. (1988). Spatial vison. New York: Oxford University Press.
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L. 0. Harvey, Jr., and V. V. Doan

spherical with -1.25 D of astigmatism and an axis of 180 deg.
In his left eye, it was -6.50 D spherical with -1.75 D of
astigmatism and an axis of 180 deg. The other author
(LOH), a 43-year old male, made less-extensive observa-
tions. The refractive error in his right eye was -3.25 D with
-2.50 D of astigmatism and an axis of 12 deg. The error in
his left eye was -0.75 D with -2.75 D of astigmatism and an
axis of 166 deg. Both observers wore hard contact lenses
during testing to eliminate both spherical and astigmatic
refractive errors and had corrected visual acuities of 20/20 or
better under these conditions. Two other subjects with
corrected-to-normal vision also made additional observa-
tions: JN, a 51-year-old male, and IEG, a 33-year-old fe-
male. Observers were treated according to the ethical stan-
dards of the University of Colorado and the American Psy-
chological Association.

Apparatus
The sinusoidal gratings were generated by an Innisfree im-
age synthesizer and were displayed on a Tektronix 608 cath-
ode-ray-tube monitor with P31 phosphor and Z-axis gamma
correction giving negligible second-harmonic distortion for
stimulus contrasts as large as 0.60. The mean luminance of
the display was 20 cd/M2 . A white mask with a 10-cm circu-
lar hole was placed in front of the monitor screen, creating a
circular stimulus field subtending 2.55 deg for a viewing
distance of 227 cm. A Southwest Technical Products S/09
microcomputer controlled all stimulus parameters, ran the
trials, and collected the data. All viewing was binocular.

Procedure
Contrast thresholds were measured in a three-alternative,
forced choice (3AFC) detection paradigm with a maximum-
likelihood threshold-estimation staircase procedure (ML-
TEST).4' 4 3 After every psychophysical trial, this proce-
dure gives a maximum-likelihood estimate of the threshold
contrast and its confidence interval and recommends the
stimulus contrast to present on the next trial. The proce-
dure stops when threshold contrast has been determined to
some specified confidence interval. We used a Weibull
function to represent the psychometric function, since it is
ogive in shape and provides a good fit to these kinds of
data 41,4" 6:

P(X) = -y + (1 - y)[1 - exp(-SL)],
SL = (X/oaY, (1)

where X is stimulus contrast, P(X) is the probability of a
correct response, a is threshold contrast, / is the steepness of
the function (held constant at 3.7 in this experiment), and y
is the probability of being correct by chance (0.333 for the
3AFC paradigm). The threshold contrast, a, is the stimulus
contrast for which detection performance is 75.5% correct in
the 3AFC paradigm. See Ref. 41 for a detailed discussion of
the ML-TEST method.

The test stimuli were selected from a 17 X 17 Cartesian
sampling lattice spaced 2.5 cycles per degree (cpd) apart in
the Fourier plane. Because the 2-D Fourier transform of
real numbers has conjugate symmetry in the frequency
plane, one need test only 144 stimuli of the 288 possible. By
restricting stimuli to those whose thresholds were raised
significantly by the, masks, we reduced the number of test
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Fig. 1. Spatial-frequency sampling lattice used in the experiment.
X's mark spatial frequencies actually tested; O's mark conjugate
symmetric points not tested but assumed from the actual data. The
spacing of the points is 2.5 cpd on linear coordinates.

stimuli from 144 to 86. The horizontal (u) and vertical (v)
spatial-frequency coordinates of these 86 test stimuli are
indicated by X's and the conjugate points are indicated by
O's in Fig. 1. For each test grating frequency, six contrast
thresholds were determined: unmasked and masked with
one of five masks. The masks all had a polar spatial fre-
quency of 8 cpd, a contrast of 0.31, and one of five polar
angles (orientations): 90, 105, 120, 135, and 180 deg. In the
spatial-frequency polar coordinate system used here, 90 deg
corresponds to a horizontal grating, 135 deg corresponds to a
grating tilted 45 deg counterclockwise from horizontal, and
180 deg corresponds to a vertical grating. The order of the
test stimuli was quasi-random. Thresholds for a specific
test frequency were measured under five of these conditions
before the next frequency was used. The presentation order
of these five conditions was random for each test stimulus.
The test with the sixth condition, the 180-deg (vertical)
mask, was done after all the others had been completed.
The temporal onset and offset of the test gratings formed a
rectangular pulse 500 msec in duration. The mask, when
present, was continuously visible.

The observer initiated each 3AFC trial by pressing a but-
ton. Each interval of the 3AFC trial was 500 msec long and
was signaled by a tone. The observer responded by pressing
an appropriate button to indicate which of the three inter-
vals contained the test grating. An incorrect response pro-
duced a feedback tone. Trials were run until each contrast
threshold was determined with a 95% confidence interval of
0.25 log contrast unit, which corresponds to a standard error
of 0.064 log unit. An average of 30 trials per threshold was
required. Single testing sessions lasted 2-8 h. It would
have been desirable to have used masks with polar angles of
150 and 165 deg as well as a smaller confidence interval for
each contrast threshold, but time considerations led us to
delete these conditions. As it was, the total data set for
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observer VVD reported here required approximately 130 h

of testing time.
Observers JN, IEG, and LOH made threshold masking

measurements for a series of test spatial frequencies from 2

to 20 cpd in 1-cpd steps (JN and IEG) and in 2-cpd steps

(LOH) at polar angles of 0 and 45 deg (JN and IEG) and at

polar angles of 90 and 135 deg (LOH). Unmasked contrast

thresholds and thresholds with an 8-cpd mask of the same

orientation as the test stimulus were measured by using the

ML-TEST procedure with a 3AFC detection paradigm.

The temporal characteristics were the same as described

above. The procedure was stopped when the threshold was

estimated with a 95% confidence interval of 0.20 log unit, i.e.,

a standard error of 0.05 log unit. JN and IEG each made

four complete sets of measurements; LOH made one set.

RESULTS

Two-Dimensional Contrast Sensitivity Functions

We converted each contrast threshold to sensitivity by com-

puting its reciprocal. The unmasked-condition contrast

sensitivity data, expanded to include conjugate symmetric

points, form a 2-D contrast sensitivity function. Data

points that were not actually measured (see Fig. 1) were set

equal to 1.0 for plotting purposes. In Fig. 2 the logarithm of

the contrast sensitivity is plotted as a function of linear

spatial frequency in the 2-D spatial-frequency plane. The

origin (zero polar spatial frequency) is the point in the mid-

dle of the plane. The features of the 2-D contrast sensitivity

function are seen more easily when the contrast sensitivity

points are used to construct contours of equal sensitivity in

the (u, v) spatial-frequency plane. Such an isosensitivity

contour plot is shown in Fig. 3. It was drawn with the

CONREC procedure provided in the GKS Graphics Utility

package from the National Center for Atmospheric Re-

search, Scientific Computing Division, Boulder, Colorado.

This procedure uses a spline interpolation algorithm to lo-

cate each isosensitivity contour. The outer contour is the

locus of all points on the 2-D frequency plane that have

contrast sensitivity of 20.0 (1.3 log sensitivity), and each

successive contour represents an increment of 0.2 log unit in

sensitivity. The irregularity of the contours reflects the

rather large standard error of each measured data point

(0.064 log unit). High-frequency resolution for a particular

stimulus orientation may be expressed as the spatial fre-

quency at which sensitivity decreases to some specified val-

ue. This frequency is represented by the distance from the

origin of Fig. 3 to one of the sensitivity contours along the

appropriate orientation. For a criterion sensitivity of 40, for

example, the resolution is 13.8 cpd for vertical test gratings

and 7.6 cpd for horizontal gratings, reflecting VVD's greater

sensitivity to vertical gratings. The results for VVD still

show an oblique effect: the mean resolution for the two 45-

deg oblique orientations is 9.2 cpd, whereas the mean verti-

cal and horizontal resolution is 10.7 cpd.

The contrast sensitivities obtained in the presence of the

8-cpd mask with polar angles of 90,105,120,135, and 180 deg

are shown as isosensitivity contour plots in Fig. 4. The

straight line centered at the origin of each figure represents

the mask: The ends of the line mark the polar frequency of

the mask; the orientation of the line indicates the polar

orientation of the mask. The contour plots reveal a marked

reduction in contrast sensitivity in the region of the 8-cpd

mask at the appropriate polar angle.

Two-Dimensional Threshold Elevation Functions

The proportional contrast threshold change at each spatial

frequency was computed for each masking condition:

P = (TCm - TC,)/TCu, (2)

where TCm is the threshold contrast in the presence of a

mask and TCQ is the threshold contrast without a mask.

Fig. 2. Log contrast sensitivity as a function of horizontal (u) and

vertical (v) spatial-frequency coordinates in cycles per degree of
visual angle, with sinusoidal test gratings for observer VVD. The

height of the surface represents contrast sensitivity: the reciprocal
of the grating contrast required to achieve 75.5% correct on a 3AFC
detection task.
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observer VVD reported here required approximately 130 h

of testing time.
Observers JN, IEG, and LOH made threshold masking

measurements for a series of test spatial frequencies from 2

to 20 cpd in 1-cpd steps (JN and IEG) and in 2-cpd steps

(LOH) at polar angles of 0 and 45 deg (JN and IEG) and at

polar angles of 90 and 135 deg (LOH). Unmasked contrast

thresholds and thresholds with an 8-cpd mask of the same

orientation as the test stimulus were measured by using the

ML-TEST procedure with a 3AFC detection paradigm.

The temporal characteristics were the same as described

above. The procedure was stopped when the threshold was

estimated with a 95% confidence interval of 0.20 log unit, i.e.,

a standard error of 0.05 log unit. JN and IEG each made

four complete sets of measurements; LOH made one set.

RESULTS

Two-Dimensional Contrast Sensitivity Functions

We converted each contrast threshold to sensitivity by com-

puting its reciprocal. The unmasked-condition contrast

sensitivity data, expanded to include conjugate symmetric

points, form a 2-D contrast sensitivity function. Data

points that were not actually measured (see Fig. 1) were set

equal to 1.0 for plotting purposes. In Fig. 2 the logarithm of

the contrast sensitivity is plotted as a function of linear

spatial frequency in the 2-D spatial-frequency plane. The

origin (zero polar spatial frequency) is the point in the mid-

dle of the plane. The features of the 2-D contrast sensitivity

function are seen more easily when the contrast sensitivity

points are used to construct contours of equal sensitivity in

the (u, v) spatial-frequency plane. Such an isosensitivity

contour plot is shown in Fig. 3. It was drawn with the

CONREC procedure provided in the GKS Graphics Utility

package from the National Center for Atmospheric Re-

search, Scientific Computing Division, Boulder, Colorado.

This procedure uses a spline interpolation algorithm to lo-

cate each isosensitivity contour. The outer contour is the

locus of all points on the 2-D frequency plane that have

contrast sensitivity of 20.0 (1.3 log sensitivity), and each

successive contour represents an increment of 0.2 log unit in

sensitivity. The irregularity of the contours reflects the

rather large standard error of each measured data point

(0.064 log unit). High-frequency resolution for a particular

stimulus orientation may be expressed as the spatial fre-

quency at which sensitivity decreases to some specified val-

ue. This frequency is represented by the distance from the

origin of Fig. 3 to one of the sensitivity contours along the

appropriate orientation. For a criterion sensitivity of 40, for

example, the resolution is 13.8 cpd for vertical test gratings

and 7.6 cpd for horizontal gratings, reflecting VVD's greater

sensitivity to vertical gratings. The results for VVD still

show an oblique effect: the mean resolution for the two 45-

deg oblique orientations is 9.2 cpd, whereas the mean verti-

cal and horizontal resolution is 10.7 cpd.

The contrast sensitivities obtained in the presence of the

8-cpd mask with polar angles of 90,105,120,135, and 180 deg

are shown as isosensitivity contour plots in Fig. 4. The

straight line centered at the origin of each figure represents

the mask: The ends of the line mark the polar frequency of

the mask; the orientation of the line indicates the polar

orientation of the mask. The contour plots reveal a marked

reduction in contrast sensitivity in the region of the 8-cpd

mask at the appropriate polar angle.

Two-Dimensional Threshold Elevation Functions

The proportional contrast threshold change at each spatial

frequency was computed for each masking condition:

P = (TCm - TC,)/TCu, (2)

where TCm is the threshold contrast in the presence of a

mask and TCQ is the threshold contrast without a mask.

Fig. 2. Log contrast sensitivity as a function of horizontal (u) and

vertical (v) spatial-frequency coordinates in cycles per degree of
visual angle, with sinusoidal test gratings for observer VVD. The

height of the surface represents contrast sensitivity: the reciprocal
of the grating contrast required to achieve 75.5% correct on a 3AFC
detection task.
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These threshold elevation data are displayed in Fig. 5 as
isoelevation contour plots for the five masking conditions.
Each contour in Fig. 5 represents a specific amount of
threshold elevation relative to the maximum elevation pro-
duced by each mask. The outer contour marks the spatial-
frequency locus at which the threshold elevation has de-
creased to 1/e of the maximum elevation; the next contour
marks where the threshold elevation has decreased to 1/2 of
the maximum. The threshold elevation contours produced
by the oblique masks form two approximately circular con-
jugate lobes; those produced by the 90- and 180-deg masks
are elliptical. Each threshold elevation lobe has at least two
elevation peaks instead of the one usually found (see, for
comparison, Refs. 2 and 8). These peaks occur not at 8 cpd,
the frequency of the mask, but at higher and lower spatial
frequencies.

Orientation Bandwidths

If the threshold elevation functions shown in Fig. 5 are
produced by mechanisms having orientation and spatial-
frequency tuning properties with spectral polar separability,
then the orientation bandwidth should be the same at differ-
ent test spatial frequencies.2 We determined the orienta-
tion bandwidths for different polar spatial frequencies by
first generating a threshold elevation curve along each of 361
polar angles (from the mask orientation minus 90 deg to the

mask orientation plus 90 deg in 0.5-deg steps) for a fixed
polar spatial frequency, using bicubic spline interpolation.47

The polar angle at which maximum threshold elevation oc-
curs was located, and then the polar angles above and below
this angle, where the masking effect decreased by a factor of
2.0, were determined. This process was repeated for 25
different polar spatial frequencies (4.0-16.0 cpd in steps of
1/12 octave) for each of the five threshold elevation surfaces.

The mean orientation half-bandwidth in degrees of angle
as a function of the ratio between the mask and test spatial
frequencies is shown in Fig. 6. The orientation bandwidth is
not constant but increases as the mask/test ratio increases,
indicating that the orientation bandwidth is narrower for
high test frequencies than for low test frequencies. Thus, in
agreement with the results of Daugman2 and Phillips and
Wilson,1 6 we reject the theory that polar separability is a
property of these threshold elevation surfaces.

Spatial-Frequency Bandwidths
Spatial-frequency bandwidth is defined by locating the up-
per and lower spatial frequencies along a radial extending
from the origin at a fixed polar angle at which the threshold
elevation decreases to one-half the maximum threshold ele-
vation. These higher- and lower-frequency bandwidths
were determined for radials passing through the locus of
each mask, the locus of the first masking peak, and the locus
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Fig. 5. Proportional threshold elevation contours in horizontal (u) and vertical (v) spatial-frequency space in the presence of an 8-cpd, 0.31-

contrast masking grating. The outer contour represents the locus of points where the threshold elevation decreases to 1/e of its maximum; the

second contour is the 1/2 locus.

of the second masking peak and are presented in Table 1

both in absolute bandwidth (in cycles per degree) and in

relative bandwidth (in octaves). Note that the masking
effects are symmetrical around the spatial-frequency loci of

the masks and not symmetrical around the peaks, suggesting

that the masking effect is generated by the spatial frequency
of the mask and not by some spurious effects in the stimulus

display equipment.
The spatial-frequency bandwidths from Table 1 and the

orientation bandwidths at 8 cpd are shown in Fig. 7 as func-

tions of the mask polar angle. The missing mask values for

150 and 165 deg are filled in by using the data for 120 and 105

deg, respectively. Spatial-frequency bandwidth is indepen-
dent of mask polar angle and has a constant value of -12.0
cpd or -2 octaves. Orientation bandwidth, on the other

hand, depends strongly on the polar angle of the mask.

Orientation bandwidths produced by the 90-deg (horizon-
tal) and 180-deg (vertical) masks are approximately 1/2 to

2/3 those produced by oblique masks.

Threshold Elevation Peaks

As is noted above, the masks produced at least two peaks in

each lobe of the threshold elevation surfaces. The locations
of these peaks in the (u, v) spatial-frequency space are shown

in Fig. 8. Also marked in Fig. 8 are the spatial-frequency

loci of the masks. It was expected that maximum threshold

elevation would have occurred at mask loci, a result clearly

not found. The threshold elevation peaks produced by 90-

and 180-deg masks lie at 90- and 180-deg polar orientations,
respectively, a not unexpected result. But when the mask is

rotated 15 deg from 90, the threshold elevation peaks still lie

at a 90-deg orientation (see points B in Fig. 8) but are shifted

to higher and lower polar spatial frequencies.

The contrast thresholds obtained from the additional ob-

servers for vertical, horizontal, and oblique test gratings

with and without an 8-cpd mask from the additional observ-
ers were used to compute proportional threshold elevation
functions. The mean threshold elevations for JN and IEG
are shown in Fig. 9(A); those for LOH are shown in Fig. 9(B).

JN and IEG have similar threshold elevation functions for
vertical and oblique tests and masks. These functions are
characterized by two peaks: one at 8 cpd and the other at a
lower frequency (5 cpd for vertical stimuli, 4 cpd for

oblique). Observer LOH shows a single threshold elevation

peak at 8 cpd for horizontal stimuli and one at 6 cpd for

oblique stimuli. Thus we see that neither the multiple

threshold elevation peaks nor the peaks at frequencies below
that of the mask are unique to observer VVD with the

present experimental paradigm.

DISCUSSION

The results of this experiment confirm the conclusion2 ' 16

that threshold elevation surfaces are not polar separable. If

the mechanisms that create these threshold elevation sur-

faces were polar separable in the spatial domain, created, for
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Fig. 10. Even kernel of the inverse Fourier transform of the pro-
portion threshold elevation surface produced by the 8-cpd, 90-deg
mask. The coordinate system is in degrees of visual angle, and the
origin is in the center of the plane.

the spatial response properties of this mechanism type by
means of the inverse Fourier transform of the threshold
elevation function. Because the spatial inhomogeneity is
not great in the fovea and because the effect of each mask is
restricted to a small portion of the spatial-frequency do-
main, we can still use the inverse Fourier transform of the
actual threshold elevation data as a first approximation of
the spatial properties of the perceptive field produced by the
mask.
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The inverse Fourier transforms of the proportional
threshold elevation surfaces were computed with the fast
Fourier transform.5 0 Since threshold detection is not sensi-
tive to the phase of the stimulus, the threshold elevation
surfaces could be due to spatial mechanisms having even or
odd symmetry or to combinations of the two. The even
inverse Fourier transform of the threshold elevation surface
produced by the 90-deg mask is shown as a surface plot in
Fig. 10. It has a large central excitatory peak, flanked on
two sides by inhibitory regions. These characteristics are
shown more clearly in the isoresponse contour plots of Fig.
11. Each contour represents the spatial loci of a constant
response amplitude. Dashed lines represent inhibition; sol-
id lines represent excitation. Each perceptive field in Fig.
11 has a large elliptical excitatory center oriented with the
orientation of the mask associated with it. This central
peak is flanked on either side by inhibitory zones, which in
turn are flanked by weaker excitatory zones. Thus the spa-
tial perceptive fields revealed by each of the spatial-frequen-
cy masks have characteristics similar to those of simple cor-
tical cell receptive fields. 51' 52

The index of threshold elevation that we used to compute
bandwidths and the inverse Fourier transforms was the pro-
portion threshold elevation, P [Eq. (2)], as was described by
Blakemore and Campbell.8 A variety of other threshold
elevation indices are possible and have been used by various
investigators: ratio of masked to unmasked thresholds, R,
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second contour is the 1/2 locus.

of the second masking peak and are presented in Table 1

both in absolute bandwidth (in cycles per degree) and in

relative bandwidth (in octaves). Note that the masking
effects are symmetrical around the spatial-frequency loci of

the masks and not symmetrical around the peaks, suggesting

that the masking effect is generated by the spatial frequency
of the mask and not by some spurious effects in the stimulus

display equipment.
The spatial-frequency bandwidths from Table 1 and the

orientation bandwidths at 8 cpd are shown in Fig. 7 as func-

tions of the mask polar angle. The missing mask values for

150 and 165 deg are filled in by using the data for 120 and 105

deg, respectively. Spatial-frequency bandwidth is indepen-
dent of mask polar angle and has a constant value of -12.0
cpd or -2 octaves. Orientation bandwidth, on the other

hand, depends strongly on the polar angle of the mask.

Orientation bandwidths produced by the 90-deg (horizon-
tal) and 180-deg (vertical) masks are approximately 1/2 to

2/3 those produced by oblique masks.

Threshold Elevation Peaks

As is noted above, the masks produced at least two peaks in

each lobe of the threshold elevation surfaces. The locations
of these peaks in the (u, v) spatial-frequency space are shown

in Fig. 8. Also marked in Fig. 8 are the spatial-frequency

loci of the masks. It was expected that maximum threshold

elevation would have occurred at mask loci, a result clearly

not found. The threshold elevation peaks produced by 90-

and 180-deg masks lie at 90- and 180-deg polar orientations,
respectively, a not unexpected result. But when the mask is

rotated 15 deg from 90, the threshold elevation peaks still lie

at a 90-deg orientation (see points B in Fig. 8) but are shifted

to higher and lower polar spatial frequencies.

The contrast thresholds obtained from the additional ob-

servers for vertical, horizontal, and oblique test gratings

with and without an 8-cpd mask from the additional observ-
ers were used to compute proportional threshold elevation
functions. The mean threshold elevations for JN and IEG
are shown in Fig. 9(A); those for LOH are shown in Fig. 9(B).

JN and IEG have similar threshold elevation functions for
vertical and oblique tests and masks. These functions are
characterized by two peaks: one at 8 cpd and the other at a
lower frequency (5 cpd for vertical stimuli, 4 cpd for

oblique). Observer LOH shows a single threshold elevation

peak at 8 cpd for horizontal stimuli and one at 6 cpd for

oblique stimuli. Thus we see that neither the multiple

threshold elevation peaks nor the peaks at frequencies below
that of the mask are unique to observer VVD with the

present experimental paradigm.

DISCUSSION

The results of this experiment confirm the conclusion2 ' 16

that threshold elevation surfaces are not polar separable. If

the mechanisms that create these threshold elevation sur-

faces were polar separable in the spatial domain, created, for
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Fig. 10. Even kernel of the inverse Fourier transform of the pro-
portion threshold elevation surface produced by the 8-cpd, 90-deg
mask. The coordinate system is in degrees of visual angle, and the
origin is in the center of the plane.

the spatial response properties of this mechanism type by
means of the inverse Fourier transform of the threshold
elevation function. Because the spatial inhomogeneity is
not great in the fovea and because the effect of each mask is
restricted to a small portion of the spatial-frequency do-
main, we can still use the inverse Fourier transform of the
actual threshold elevation data as a first approximation of
the spatial properties of the perceptive field produced by the
mask.
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The inverse Fourier transforms of the proportional
threshold elevation surfaces were computed with the fast
Fourier transform.5 0 Since threshold detection is not sensi-
tive to the phase of the stimulus, the threshold elevation
surfaces could be due to spatial mechanisms having even or
odd symmetry or to combinations of the two. The even
inverse Fourier transform of the threshold elevation surface
produced by the 90-deg mask is shown as a surface plot in
Fig. 10. It has a large central excitatory peak, flanked on
two sides by inhibitory regions. These characteristics are
shown more clearly in the isoresponse contour plots of Fig.
11. Each contour represents the spatial loci of a constant
response amplitude. Dashed lines represent inhibition; sol-
id lines represent excitation. Each perceptive field in Fig.
11 has a large elliptical excitatory center oriented with the
orientation of the mask associated with it. This central
peak is flanked on either side by inhibitory zones, which in
turn are flanked by weaker excitatory zones. Thus the spa-
tial perceptive fields revealed by each of the spatial-frequen-
cy masks have characteristics similar to those of simple cor-
tical cell receptive fields. 51' 52

The index of threshold elevation that we used to compute
bandwidths and the inverse Fourier transforms was the pro-
portion threshold elevation, P [Eq. (2)], as was described by
Blakemore and Campbell.8 A variety of other threshold
elevation indices are possible and have been used by various
investigators: ratio of masked to unmasked thresholds, R,
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Fig. 12. Half-amplitude contours of the Gaussian envelope of the five
dashed circle marks the 8-cpd locus. The orientation of each line marks

across different orientation masks but that b, the orientation
bandwidth, is narrower for 90 and 180 deg than for oblique
orientations. The Gaussian envelopes of the vertical and
horizontal Gabor functions are elliptical, whereas the
oblique Gabor functions have nearly circular envelopes.
The half-amplitude bandwidth contours for the five Gabor
functions are plotted in Fig. 12. The properties of these
best-fitting Gabor functions reflect the bandwidths derived
from the data themselves (see Fig. 7 for comparison).

Daugman, 3
in his survey of reported characteristics of

simple cortical cells, concluded that the width-to-length ra-
tio of cells' receptive fields ranges from 0.25 to 1.0 and that
0.6 represents the majority. The comparable ratio (b/a) of
the five Gabor functions found in the present experiment
ranges from 0.51 to 1.18, in excellent agreement with the
electrophysiological data surveyed by Daugman 3

as well as
the mean ratio of 0.69 reported by Webster and De Valois5 9

for cells in cat visual cortex.

We have also performed similar fittings of Gabor func-
tions to threshold elevation data indexed by pl.

6 and log(R)
in both the frequency domain and the space domain as
computed with the even inverse Fourier transform. All
these analyses agree with the results presented here: spa-
tial-frequency bandwidth is independent of mask orienta-
tion; orientation bandwidth is broader with oblique masks
than with vertical and horizontal masks. The Gaussian
envelope of the best-fitting Gabor function is circular for
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Gabor functions fitted to each set of threshold elevation data. The
the polar orientation of the mask.

oblique masks and elliptical for vertical and horizontal
masks.

The evidence reported here provides a basis for under-
standing the oblique effect: the orientation tuning of
oblique perceptive fields is broader than the orientation
tuning of vertical and horizontal perceptive fields. The
appearance of two loci of maximum threshold elevation in
each of the masking functions is puzzling. It suggests that
in the present paradigm, which combines adaptation and
masking, two perceptive fields were isolated, one at a fre-
quency higher than that of the mask and one at a lower
frequency. Whether this finding is to be taken as evidence
for a discrete number of perceptive fields, as some have
suggested, remains to be explored in future experiments.
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log (R), log(R - 1), and P raised to the power 1.6 to compen-

sate for the nonlinear effect of mask contrast on test contrast

threshold. The use of each of these indices implies a specific

model of visual masking, but it is not easy to demonstrate

that one of these is the correct index.
53 As a precaution, we

computed inverse Fourier transforms on threshold elevation

functions based on pl.6, P, and log(R). The use of these

indices produces the same qualitative results as are shown in

Figs. 10 and 11. The main effect of using these different

indices is on the estimates of tuning bandwidths. In gener-

al, spatial-frequency and orientation tuning bandwidths are

narrowest with p1.6 and broadest with log(R).

In 1980, Marcelja
5 4 noted that cells in the visual cortex

have response characteristics similar to a class of mathemat-

ical functions proposed by Gabor
5 5 as basis functions in his

theory of communication. These functions minimize joint

uncertainty in the space and spatial-frequency domains si-

multaneously. Daugmanl'3 ,37 derived and described the

characteristics of the 2-D versions of these functions (now

called Gabor functions). Recent electrophysiological
5 65 9

and psychophysical
2' 6 0'61 evidence supports the existence of

mechanisms in the visual system that are spatially restricted

and are tuned to a narrow range of spatial frequencies and

orientations and that can be described by, among others, the

2-D Gabor function. Such functions are the product of a

bivariate Gaussian distribution and a complex exponential

term. The form of the Gabor function in the spatial domain

is

G(x, y) = c exp[-7r(x ,2a2 + y4.2b2)i

X exp1-2ri[u 0(x - x0) + vo(y - yo)]), (3a)

where

X,, = [(x - x0)cos(0)] + [(y - y 0 )sin(0)],

y = -[(x - x0)sin(0)] + [(y - y0 )cos(4))],

and where x and y are the coordinates of spatial position in

degrees of visual angle. The form of the Gabor function in

the frequency domain is

G(u, v) = c expl-.r[u. 2/a2 + v02lb2p

X exp1-27ri[x 0(u - uo) + y 0(v - vo)]J, (3b)

where

u,, = [(u - u 0)cos(0)] + [(v - v0)sin(4))],

V0 = -[(u - u0)sin(4))] + [(v - vo)cos)],

and where u and v are the coordinates of spatial-frequency

position in cycles per degree of visual angle. In both equa-

tions x0 and yo are the spatial coordinates of the center of the

function, a and b are the major and minor axes of the Gauss-

ian ellipse, 0 is the polar orientation of the major axis a, uo

and v0 are the spatial-frequency coordinates (in cycles per

degree) of the locus of maximum frequency sensitivity, i is

the square root of -1, and c is a weighting factor.

Since the threshold elevation surfaces and their inverse

Fourier transforms have the qualitative characteristics of a

2-D Gabor function, we decided to explore the matter quan-

titatively. The proportion threshold elevation data were

fitted to functions that were the sum of one, two and three 2-

D Gabor mechanisms in the form of Eq. (3b), using the

nonlinear weighted least-squares method of Marquardt.6 2 ,63

We found that allowing A, the orientation of the Gaussian

envelope, to vary as a free parameter did not statistically

improve the fit, so we constrained 4 to be equal to the polar

angle of (uo, vo). The fits of a single Gabor function for the

90-, 105-, 120-, 135-, and 180-deg masking data have R 2

(proportion of variance accounted for) values of 0.69, 0.66,

0.72,0.49, and 0.61, respectively. Although using two Gabor

functions improves the fit, as might be expected from the

multiple threshold elevation peaks in the data, the improve-

ment is not statistically significant. Using x2 as a test of the

fit, we cannot reject the hypothesis that a single Gabor func-

tion is sufficient to characterize each threshold elevation

surface, except with the 180-deg masking data. Three Ga-

bor functions did not provide satisfactory descriptions of the

data. The fitting procedure did not converge in a normal

manner, and the elliptical axis parameters, a and b, took on

unrealistic values (usually one of them would become zero).

The parameters of the best-fitting frequency-domain Ga-

bor functions are shown in Table 2. Notice from Table 2

that each Gabor function is matched well to the spatial

frequency of the mask that produced the threshold elevation

data. The polar frequencies (r) of the Gabor functions

range from 7.9 to 8.7 cpd, close to the 8.0 cpd of each mask.

The largest discrepancy between the polar angle of the mask

and that of the best-fitting Gabor function is 3.7 deg for the

90-deg mask. The ratio, a/b, of the major and minor axes of

the Gaussian elliptical component of a Gabor function is

related to the relationship between spatial-frequency band-

width and orientation bandwidth. Since X, the orientation

of the major axis a, was constrained to have the same value as

0, the polar spatial-frequency orientation of the Gabor, a is a

measure of spatial-frequency bandwidth, b is a measure of

orientation bandwidth, and the a/b ratio is a measure of the

ratio of frequency and orientation bandwidths. Table 2

shows that a, the spatial-frequency bandwidth, is constant

Table 2. Parameters of the Frequency-Domain
Gabor Functions [Eq. (3b)] That Provide the Least-
Squares Fit to Each of the Proportional Threshold

Elevation Data Seta

Value for a Mask at the Following Polar Angle

Parameter 90 105 120 135 180

a 9.739 9.403 8.745 9.557 11.006

b 5.893 9.757 9.889 11.250 5.647

UO 0.567 -1.713 -3.804 -6.165 -7.864

Vo 8.716 8.360 7.405 6.239 -0.304

0 86.3 101.6 117.2 134.7 182.2

c 2.843 1.862 2.330 1.692 2.615

r (cpd) 8.734 8.534 8.325 8.771 7.870

0 (deg) 86.3 101.6 117.2 134.7 182.2

a/b 1.653 0.964 0.884 0.850 1.949

b/a 0.605 1.038 1.131 1.177 0.513

x
2

(81) 65.1 57.8 80.5 96.9 157.9

Probability 0.903 0.976 0.494 0.111 <0.001

a Included in the table are the spatial-frequency polar coordinates r and 0
computed from uo and vo, as well as the width/length and length/width axis
ratios of the Gaussian ellipses. x

2
is a goodness-of-fit measure. The proba-

bility of not rejecting the hypothesis that the Gabor function adequately

describes the data is given for the indicated degrees of freedom.

L. 0. Harvey, Jr., and V. V. Doan



RECEPTIVE-FIELD 2D GABOR FILTER MODEL 1235 
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B Elliptic Gaussian E Elliptic Gaussian 

C 2D Gabor filter 
spatial response profile 

F 2D Gabor filter 
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FIG. 1. Structure of two-dimensional (2D) Gabor filters in the space (left) and spatial frequency (right) domains. 
In the space domain, a 2D Gabor filter (C) can be described as the product of a sinusoidal plane wave (A) and a 
bivariate elliptic Gaussian (B). In the spatial frequency domain, a 2D Gabor filter (F) can be described as the 
convolution of a pair of impulses at a specific frequency (D) and an elliptic Gaussian (E). Graphs in the left- and 
right-hand columns are of Fourier transform pairs. The coordinates of the 2D space domain are illustrated in B. The 
surface Y is a function of the two Cartesian variables x and y. The coordinates of the 2D spatial frequency domain are 
illustrated in E. The surface R can be thought of as a function of the polar variables spatial frequency (the radial axis 
F) and orientation (the angular axis e). In B and -E, the axes have been drawn above the base plane for clarity. 

the x and y  directions, respectively. Using Euler’s The optimality of the 2D Cabor filter applies 
formula, this can be written only to the filter in its complex form. In an exper- 
m(x, y) = cos [-274 Ufl+ Vi&] iment we can observe only real signals (here, the 

cosine term). As before, there is no unique prop- 
+ i sin [-27r(U@ + v&)] erty of the coordinate system on which we collect 
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FIG. 2, cont. 
The 2D Gabor filter describes all of the main features of 2D spatial response profiles. A: an odd-symmetric profile in 
which the 2 subregions are slightly staggered. B: a profile close to odd symmetry. C: an asymmetric profile. D and 
F: 2 profiles close to even symmetry, with staggered subregions. E: a Cartesian separable profile. 
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FIG. 2. The two-dimensional (2D) Gabor filter fits simple cell 2D spatial response profiles. Each part of this figure 
illustrates a 2D spatial response profile, the corresponding least-squared error best-fitting 2D Gabor filter, and the 
residual error, that function of space which remains after the 2D Gabor filter has been subtracted from the data. 
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spatial filter achieves maximal energy (or variance) is defined as the
optimal delay time. In this case, the optimal delay time is 74 ms. A
second example of a cell that is broadly tuned for orientation and has a
biphasic temporal response is shown in Fig. 1B. At the optimal delay time
of 56 ms, the spatial profile of this cell resemble a circularly symmetric
blob. In this study, the spatial profile of V1 RFs were analyzed at their
optimal delay time (DeAngelis et al. 1993b).
To analyze the spatial profile of RFs, a two-dimensional Gabor

function was fit to the data (Jones and Palmer 1987a)

h!x", y"# ! A exp!$!x"/!2"x"#
2 # !y"/!2"y"#

2# cos !2$fx" % &# (1)

where (x", y") is obtained by translating the original coordinate system
by (x0, y0) and rotating it by '

x" ! !x # x0# cos ' % !y # y0# sin '

y" ! $!x # x0# sin ' % !y # y0# cos ' (2)

In this coordinate system, the cosine function in the Gabor varies
only along the x" axis. Notice that one of the axes of the Gaussian
envelope aligns with the x" axis and the other with the y" axis. The
parameter A is the amplitude, "x" and "y" represent the width of the
Gaussian envelope along the x" and y" axes, respectively, f is the
spatial frequency of the sinusoidal grating in cycles/degree, and & is
the spatial phase of the grating. A spatial phase of & % 0 results in an
even symmetric kernel, while a spatial phase of & % $/2 gives an
odd-symmetric kernel. I did not find it necessary to add a parameter
to vary the relative orientation of the envelope with respect to the
orientation of the grating as done by Jones and Palmer (1987a). Such
a parameter helped only in a small number of cases.
Figure 2 illustrates examples of the spatial profiles measured at

their optimal delay time together with the best fitting Gabor function
(in the least squares sense) and the corresponding residual images. It
can be seen that, similar to previous reports in cat area 17 (Jones and
Palmer 1987a), the two-dimensional Gabor function provides a rea-
sonable summary of the shape of spatial RFs profiles in macaque
primary visual cortex. This is also evidenced in the distribution of the
fraction of unaccounted variance over the population (Fig. 3). Assum-
ing independent and additive noise, the fraction of unaccounted vari-
ance is defined as "err

2 /("data2 $ "noise
2 ). Here, "err2 represents the variance

of the residual image, "data
2 is the variance of the estimated RF at the

optimal delay time, and "noise
2 is the variance of the noise estimated as

the variance of the RF map at a delay of 0 ms.
To compare the experimental data to the predictions of existing

theories, the shape of RFs predicted by ICA and SC were analyzed in
a similar fashion. The ICA data have been provided by Dr. Hans van
Hateren and colleagues and are available on the web from http://
hlab.phys.rug.nl/demos/ica/comp_filt.html. I report results for the data
set with log intensity transformation and dimension reduction. Similar
results were obtained for the linear intensity data set. Dr. Bruno
Olshausen provided the RF predictions of SC. These data correspond
to the implementation reported in Olshausen (2001).

R E S U L T S

To analyze the structure of RFs in V1 over the population, a
scatter-plot of nx % "x f versus ny % "y f based on the fitted
parameters (Fig. 4) was first constructed. One can think of
these values as the number of sinusoidal cycles of the Gabor
carrier fitting in a segment of length "x and "y, respectively. In
other words, the size of the Gaussian envelope is measured in
units of the period of the sinusoidal grating, T % 1/f. This
visualization is invariant to translations, rotations, isotropic
scaling, and the symmetry (or spatial phase) of the RF. Invari-
ance to isotropic scaling of the RF results because, for any (,
we have nx % (("x)( f/() % "x f (and the same holds for ny).

FIG. 2. Two-dimensional Gabor fits to the data. Left: examples of the
measured receptive fields. Middle: the best Gabor fit in the least squares sense.
Right: the residual images. In general, 2-dimensional Gabor functions provide
a good representation of the shapes of receptive fields in V1.

FIG. 3. Distribution of the amount of variance unaccounted for in the Gabor
fits.
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Invariance with respect to translation, rotation, and spatial
phase is obtained simply because (nx , ny) do not depend on the
values of x0, y0, !, and ". The distribution of the spatial phase
variable is analyzed separately in the following text.
Figure 4 shows that the distribution of (nx , ny) in macaque

V1. The shape of some RFs at different locations along the
distribution are also shown. Blob-like RFs are mapped to
points near the origin. RFs with a number of elongated sub-
fields are mapped to points away from the origin. Interestingly,
the distribution of (nx , ny) appears to lie, approximately, on a
one-dimensional curve. This implies a constraint between the
variables: (nx , ny) are correlated. a smoothed version (estimat-
ed by local robust linear regression) of the scatter plot (Cleve-
land and Devlin 1988) is provided (- - -). For comparison with
previously published results in cat, the data in Table 1 of Jones
and Palmer (1987a) are re-plotted here using the same analysis
(Fig. 5,!). Overall, the data in cat area 17 and macaque V1 are
comparable. The cat data appear to be shifted slightly to the left
of the monkey data, suggesting a smaller number of subfields.
However, I discuss in the following text a methodological
difference between these studies that might explain this dis-
crepancy.
To analyze the distribution of the spatial phase variable the

following should be noted. A consequence of Eq. 1 is that if
two RFs are the same except for their spatial phase, a number
of simple relationships hold. First, if "2 " "1 # #, the RFs are
identical up to a change in sign, h2(x$, y$) " %h1(x$, y$).
Second, if "2 " k(#/2) # $ and "1 " k(#/2) % $, where k is
even, and $ an arbitrary angle, the RFs are mirror symmetric
around the x axis and h2(x$, y$) " h1(%x$, y$). Third, if "2 "
k(#/2) # $ and "1 " k(#/2) % $, where k is odd, the RFs are
related by mirror symmetry and a change in sign, h2(x$, y$) "
%h1(%x$, y$). As mirror symmetry and flips in sign do not
change the basic shape of the filter, we discard these transfor-

mations and define the effective range of the spatial phase
parameter to be 0 % " % #/2. Mapping an arbitrary spatial
phase angle to this range can be achieved by defining "̂ "
arg(!cos "! # i!sin "!). Even symmetry is obtained when "̂ "
0 and odd symmetry when "̂ " #/2. These relationships are
summarized graphically in Fig. 6A (see also, Fig. 1 in Field and
Tolhurst 1986 and the accompanying discussion).

FIG. 4. Distribution of receptive field shapes in the (nx , ny) plane. A
number of receptive fields are shown along the distribution. - - -, a smooth
version of the scatterplot. Blob-like receptive fields are mapped to points near
the origin. Neurons with several subfields are mapped to points away from the
origin.

FIG. 5. Comparison between monkey and cat simple-cell receptive fields.
E, data obtained in macaque (present study); !, the data in Table 1 of Jones
and Palmer (1982) re-plotted in the (nx, ny) plane.

FIG. 6. A: summary of symmetry relationships and the spatial phase of a
Gabor function. B: distribution of "̂ in macaque V1.
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Visual Information

• Visual stimuli have spatial frequency content (Fourier Analysis). 
• High spatial frequencies 

• Sharp borders and fine detail 
• Low spatial frequencies 

• Gradual changes and large features



Spatial Frequencies

! Small Receptive Fields detect high spatial frequencies 
! Large receptive fields detect low spatial frequencies 
! The eye and the brain are extremely adept at performing some 

tasks using only very low spatial frequencies.







Spatial Frequency Bands



Spatial Frequency Bands
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Effect of Adaptation Level on Contrast Sensitivity

• Two main effects of lowering 
adaptation level 
• Lower sensitivity 
• Loss of high spatial frequencies

van Meeteren, A., & Vos, J. J. (1972). Resolution and contrast sensitivity at low luminances. Vision Research, 12(5), 825–826. 



A Typical Scene



Pedestrian Crosswalk



Spatial Frequency Filtering 
with Contrast Scaling

! Here is what happens when you filter the spatial frequencies and 
adjust the contrast of the image to be proportional to the loss of 
absolute contrast sensitivity of the human visual system at the lower 
levels of light adaptation.



Frequency Filtering 
with Contrast Scaling
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Frequency Filtering 
with Contrast Scaling
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Conclusions
• The retinal image can be described by its spatial frequency content 

• The visual system can be described by its sensitivity to various 
spatial frequencies 

• We can approximate vision at low levels by filtering out frequencies 
that we can’t see at low levels 

• The quality of our vision changes at low levels of light



Break



Face Recognition



Analysis & Dynamic Interaction

• Sensory input is broken into separate streams of 
information 

• Lines & edges 
• angles & orientation, 
• size & scale 
• color 
• movement 

• Over 50% of cortex has visual responses 
• Reality is constructed from these component parts 

using goals, expectations, biases, rewards.



Lines and Contours 
Angles and Orientations



“Pop Out”–Ann Treisman

• Curvature 
• Tilt 
• Color 
• Line Ends 
• Movement

• Closed Areas 
• Contrast 

• Brightness 



Texture Segregation 
Jacob Beck and Bela Julesz
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Texture Segregation 
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What we perceive does not correspond to physical 
properties
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Modeling Vision



Ganglion Cell Receptive Field



Ganglion Cell 
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Cortical Cell Receptive Fields
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MAX operation. That is, the response r of a complex unit

corresponds to the response of the strongest of itsm afferents

ðx1; . . . ; xmÞ from the previous S1 layer such that:

r ¼ max
j¼1...m

xj: ð3Þ

Consider, for instance, the first band: S ¼ 1. For each

orientation, it contains twoS1 maps: The one obtained using a

filter of size 7$ 7 and the one obtained using a filter of size
9$ 9 (see Table 1). The maps have the same dimensionality
but they are the outputs of different filters. The C1 unit
responses are computed by subsampling these maps using a
cell grid of size NS $NS ¼ 8$ 8. From each grid cell, one
single measurement is obtained by taking the maximum of all
64 elements. As a last stage, we take a max over the two scales
from within the same spatial neighborhood, by recording

SERRE ET AL.: ROBUST OBJECT RECOGNITION WITH CORTEX-LIKE MECHANISMS 413

Fig. 1. System overview: A gray-value input image is first analyzed by an array of S1 units at four different orientations and 16 scales. At the next
C1 layer, the image is subsampled through a local MAX ðMÞ pooling operation over a neighborhood of S1 units in both space and scale, but with the
same preferred orientation. In the next stage, S2 units are essentially RBF units, each having a different preferred stimulus. Note that S2 units are tiled
across all positions and scales. A MAX pooling operation is performed over S2 units with the same selectivity to yield the C2 unit responses.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE 
transactions on pattern analysis and machine intelligence, 29(3), 411–426. 



Wolfrum, P., Wolff, C., Lücke, J., & von der Malsburg, C. (2008). A recurrent dynamic model for correspondence-based face recognition. Journal 
of Vision, 8(7), 1–18. doi: 10.1167/8.7.34

object may vary greatly, leading to high similarity
between non-corresponding points (see, e.g., Wiskott,
1999). Figure 1B shows this in cartoon form, black lines
connect the features with highest similarity, which results
in wrong correspondences in this case. For realistic inputs
such situations are very frequent and the ambiguities
increase the more feature detectors are used. For a human
observer, in distinction, it is easy to find correct
correspondences, also in Figure 1B. The reason for this
is that an object is defined by its features and their spatial
arrangement. Correspondence-based systems therefore
have to take both of these cues into account. Shifter
circuits (Anderson et al., 2005; Olshausen et al., 1993) are
relatively rigid in activating topologically consistent sets
of links, whereas dynamic link matching (Lades et al.,
1993; Wiskott & von der Malsburg, 1996; Würtz, 1995)
has a more flexible dynamic control that lets neighboring
links communicate directly with each other. In this paper,
we use a flexible dynamics, as in earlier DLM systems,
together with explicit units that control the connectivity
between layers similar to control units in shifter circuits.
A two-layer model of this type was suggested in Lücke
et al. (2008) to study fast and neurally plausible solutions
to the correspondence problem. Here, we study a three-
layer system and its application to the more complex task
of recognition.
The principal architecture of the system discussed in

this work is shown in Figure 2. It consists of three layers:
an Input Layer for image representation, an Assembly
Layer, and a Gallery Layer as memory. The Assembly
Layer establishes correspondences between input and
memory. It recurrently integrates information about
feature similarity, feature arrangement, and face identity.
Given an input, the integration of these information
components results in the system to converge to a state

that represents a percept. Figure 2 sketches the system
after such a convergence when it has correctly established
correspondences between a person’s face stored in
memory (i.e., in the Gallery Layer) and a given input
image of this person. In the following the system’s
architecture and neurodynamic mechanisms will be dis-
cussed in detail.

A dynamic model of cortical
columns

The computational elements of our system are motivated
by anatomical and physiological properties of the cortex
on the scale of a few hundred microns. In particular, our
modeling reflects the cortex’s columnar organization (see,
e.g., Mountcastle, 1997) and the concept of canonical
cortical microcircuits1 as, e.g., suggested by Douglas,
Martin, and Witteridge (1989). That is, we take cortical
columns as basic computational elements of our network
and assume that all columns perform similar stereotypical
computations. Depending on the perspective or the
cortical area a cortical column is commonly referred to
as macrocolumn (Mountcastle, 1997), segregate (Favorov
& Diamond, 1990), hypercolumn (Hubel & Wiesel, 1977)
or simply column (e.g., Yoshimura, Dantzker, & Callaway,
2005) and, for instance in primary visual cortex, com-
prises roughly all neurons that can be activated from one
point in visual space.
The analysis of the fine structure within a column

suggests disjunct populations of excitatory neurons as
functional elements. Anatomically, axons and dendrites of
pyramidal cells have been found to bundle together and to
extend orthogonally to the pial surface through the cortical
layers. All neurons that directly contribute to one such
bundle form a thin columnar module of just a few tens of
microns in diameter (Buxhoeveden & Casanova, 2002;
Peters & Sethares, 1996; Peters & Yilmaz, 1993).
Together with associated inhibitory neurons (see, e.g.,
DeFelipe, Hendry, Hashikawa, Molinari, & Jones, 1990;
Peters & Sethares, 1997) such a module was termed
minicolumn (see, e.g., Buxhoeveden & Casanova, 2002;
Favorov & Kelly, 1994; Mountcastle, 1997, 2003; Peters
& Sethares, 1996) and was suggested as the basic
computational unit of cortical processing (but see Jones,
2000; Rockland & Ichinohe, 2004, for critical discus-
sions). More recent evidence for disjunct functional units
within a cortical column comes from experiments using
focal uncaging of glutamate combined with intracellular
recordings (Yoshimura et al., 2005). It was found that a
column has a fine structure of functionally relatively
disjunct populations of layer 2/3 pyramidal cells. The
relation of these populations to the cortical minicolumn
has yet to be clarified, however. The main potential
difference is that the concept of a minicolumn requires
neurons in a population to be spatially adjacent whereas

Figure 2. Principle of object recognition in our system. The system
has to simultaneously represent information about position and
identity of the input face and its parts. Positional information is
represented by dynamic links establishing correspondences
between points in the input image and in the internal reference
frame (“Assembly Layer”). Identity information is represented by
the activity of Gallery units, different graphs storing memories of
different faces. Both modalities contribute to the internal Assembly
Layer, which reconstructs the visual input information.

Journal of Vision (2008) 8(7):34, 1–18 Wolfrum, Wolff, Lücke, & von der Malsburg 4



energy (i.e., the 2-norm of the column activity vector)
stays constant3:

xi
! :¼ xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

j¼1 x
2
j

q : ð3Þ

This kind of output normalization is advantageous for
maintaining homeostatis in networks of columns and may
be carried out by neurons in layer 5 of the cortex as
suggested by Douglas and Martin (2004).

The network model

In Lücke et al. (2008) a model for correspondence
finding is described that makes use of a population code
within cortical columns, which allows fast point-to-point
matching between two patterns (estimated in the range or
below 100 ms). Here we extend this model to a system that
matches images of different geometry and can compare
input images to a gallery of many stored models simulta-
neously. Preliminary results of this work have been
described in Wolfrum, Lücke, & von der Malsburg (2008).
Our network is made up of layers, which loosely

correspond to the different cortical areas that make up
the visual system (we are not speaking here of the layers
of anatomically different neurons that can be distinguished
within one area of cortex). Layers are organized topolog-
ically, with a topology that may be stimulus space, like in
V1 and somatosensory cortex, or a more abstract space.
The layers of our network interact recurrently and activity
collectively converges toward a final state that represents
the “percept” of the network, in our case the possible
recognition of a face.
Layers may contain both feature columns and decision

columns. If we assume every feature column to represent
all relevant features at one position of a retinal image,
then layers of feature columns can represent whole

images. The network introduced below uses layers of
two different spatial arrangements:

1. Rectangular grid. Straightforward representation
suitable for any image. Every column represents
one specific geometric location (see Figure 4A).

2. Face graph structure. An arrangement specifically
suited for faces, where each column represents an
important landmark position on a face (see Figure 4B).
Note that in this case, a column does not necessarily
represent a fixed spatial location in the image, but
rather a fixed semantic location (nose, mouth, eye,
chin, etc.). Spatial locations of landmarks can change
according to the face they represent.

The network consists of the following three layers (see
Figure 5):

1. Input Layer I : Represents the input image in a
rectangular grid.

Figure 4. Different representations of facial images. A rectangular
grid graph (A) is used for input image representation, a face graph
(B) consisting of characteristic points (landmarks) is a dedicated
data structure used for internal face representation.

Figure 5. Architecture of our network. The gray oval structures
represent columns (the vertical ones feature columns, the
horizontal ones decision columns), with units as lighter cylinders
inside. The numbers of units and columns shown here are chosen
exemplarily for visualization purposes only and are not identical to
the real numbers of units used in this work. The Input Layer is
organized in a rectangular grid (represented by the light blue lines
connecting columns), while both the Assembly Layer and the
Gallery Layer have face graph topology. At each landmark in the
Assembly Layer there are three columns, two feature columns of
the Input Layer and Gallery Assembly, and one control column.
Input and Assembly are connected all to all (shown exemplarily
for the left lowermost point in the Assembly Layer), while
Assembly landmarks are connected only to the same landmarks
in Gallery but to all identity units there (see also Figure 6). The
green lines connecting the three layers and the subset of green
highlighted (= activated) Gallery units represent a possible final
state of the network.

Journal of Vision (2008) 8(7):34, 1–18 Wolfrum, Wolff, Lücke, & von der Malsburg 6
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1. Input Layer I : Represents the input image in a
rectangular grid.

Figure 4. Different representations of facial images. A rectangular
grid graph (A) is used for input image representation, a face graph
(B) consisting of characteristic points (landmarks) is a dedicated
data structure used for internal face representation.

Figure 5. Architecture of our network. The gray oval structures
represent columns (the vertical ones feature columns, the
horizontal ones decision columns), with units as lighter cylinders
inside. The numbers of units and columns shown here are chosen
exemplarily for visualization purposes only and are not identical to
the real numbers of units used in this work. The Input Layer is
organized in a rectangular grid (represented by the light blue lines
connecting columns), while both the Assembly Layer and the
Gallery Layer have face graph topology. At each landmark in the
Assembly Layer there are three columns, two feature columns of
the Input Layer and Gallery Assembly, and one control column.
Input and Assembly are connected all to all (shown exemplarily
for the left lowermost point in the Assembly Layer), while
Assembly landmarks are connected only to the same landmarks
in Gallery but to all identity units there (see also Figure 6). The
green lines connecting the three layers and the subset of green
highlighted (= activated) Gallery units represent a possible final
state of the network.

Journal of Vision (2008) 8(7):34, 1–18 Wolfrum, Wolff, Lücke, & von der Malsburg 6
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Robert Yin, 1969
Inversion Affects Faces
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Peter Thompson (1980)
Feature Inversion Effect (“Thatcher Illusion”)



Thompson, P. G. (1980). Margaret Thatcher: A new illusion. Perception, 9(4), 483–484. 



Thompson, P. G. (1980). Margaret Thatcher: A new illusion. Perception, 9(4), 483–484. 



Carbon, C.-C., Schweinberger, S. R., Kaufmann, J. M., & Leder, H. (2005). The Thatcher illusion seen by the brain: An event-related brain potentials study. Cognitive Brain 
Research, 24(3), 544-555. doi: 10.1016/j.cogbrainres.2005.03.008



Carbon, C.-C., Schweinberger, S. R., Kaufmann, J. M., & Leder, H. (2005). The Thatcher illusion seen by the brain: An event-related brain potentials study. Cognitive Brain 
Research, 24(3), 544-555. doi: 10.1016/j.cogbrainres.2005.03.008



Carbon, C.-C., Schweinberger, S. R., Kaufmann, J. M., & Leder, H. (2005). The Thatcher illusion seen by the brain: An event-related brain potentials study. Cognitive Brain 
Research, 24(3), 544-555. doi: 10.1016/j.cogbrainres.2005.03.008



Carbon, C.-C., Schweinberger, S. R., Kaufmann, J. M., & Leder, H. (2005). The Thatcher illusion seen by the brain: An event-related brain potentials study. Cognitive Brain 
Research, 24(3), 544-555. doi: 10.1016/j.cogbrainres.2005.03.008

demonstrated that a presentation time of only 34 ms is
sufficient to recognize familiar faces at a high level with
Pshort-pt(correct) = 0.918 compared to Plong-pt(correct) =
0.953, replicating effects of briefly presented faces ([7], for
fast face attractiveness processing, see [25]). Moreover,
such a short presentation time is also sufficient to induce
typical effects of the recognition of Thatcherized faces (cf.
[9]).

Effects of Thatcherization were found for the N170
(170–190 ms), but not for the early P1 component (100–
140 ms). This influence of Thatcherization on the N170 was
independent of presentation time.

Moreover, there was a strong effect of orientation for the
N170 and the late time window (300–500 ms), but not for
the P1 and P250 component (200–300 ms). For Original
faces, we found larger N170 amplitudes for inverted faces
compared with upright faces. This is in accordance with a
number of other ERP studies [17,36,38,42]. The current
experiment extends the study by Milivojevic et al. [28] by

Fig. 7. Topographical voltage maps of the ERP amplitudes for Original (1st row) and Thatcherized faces (2nd row). The left maps show the data for the upright

condition, the right maps show the data for the inverted condition. Additionally, the differences between Original and Thatcherized face amplitudes are given

by maps in the bottom row. Maps show a 110- equidistant projection and were obtained using spherical spline interpolation. Negativity is red.

Fig. 8. Amplitudes (in microvolts) of orientation for the different time

windows. Asterisks indicate significant simple main effects of the factor

orientation. Error bars are standard errors of the mean.

C.-C. Carbon et al. / Cognitive Brain Research 24 (2005) 544–555 553
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Faces and Emotions



F. Gosselin, P.G. Schyns / Vision Research 41 (2001) 2261–2271 2265

demonstrates the unique property of Bubbles: it is a
human, partially efficient, not a formal, optimally effi-
cient, feature extraction algorithm.

3. Experiment 2

Experiment 2 applies Bubbles to the more challeng-
ing task of face identity. We want to demonstrate that
the technique is versatile and can be applied to a more
complex, abstract ‘image generation’ space. Bubbles
will here search a 3D space comprising the two dimen-
sions of the image plane and the third abstract dimen-
sion of spatial scales.

It is now well established that the identity of faces is
represented at multiple spatial scales (see Morrison &
Schyns, 2001, for a review). However, research on face
recognition has so far lacked a technique that identifies
the specific aspects of identity that humans locally
represent at different scales. Experiment 2 applies Bub-
bles to a simple face identification task.

3.1. Method

This application of Bubbles is very similar to that of
experiment 1. Participants were twenty paid University
of Glasgow students, with normal, or corrected to
normal vision. Stimuli were computed from ten of the

Fig. 4. This figure illustrates the application of Bubbles in experiment 2. Pictures in (b) represent five different scales of (a); (c) illustrate the
bubbles applied to each scale; (d) are the revealed information of (b) by the bubbles of (c). Note that on this trial there is no revealed information
at the fifth scale. By integrating the pictures in (d) we obtain (e), a stimulus subjects actually saw.Gosselin, F., & Schyns, P. G. (2001). Bubbles: A technique to reveal the use of information in recognition tasks. Vision Research, 41(17), 2261-2271. 
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coarsest scale (i.e., the fourth scale) is much less differentiated across
tasks. Thus, the coarse scale forms a skeleton that is progressively dis-
tinguished and fleshed out with increasing spatial resolution (see the
progression of face information from coarse to fine in the small pic-
tures of Fig. 2, from right to left).

A comparison of the relative use of scales within each task shows a
clear advantage in the identity task for the third scale, corresponding
to face information between 11.25 and 22.5 cycles per face (the best
scale for face recognition varies between 8 and 32 cycles per face in
the literature; see Morrison & Schyns, 2001). The preferred scale for

Fig. 2. The effective faces (large faces) and diagnostic information used to resolve the iden-
tity (a), gender (b), and expressiveness (c) tasks. The smaller pictures illustrate the diagnostic
information used to resolve each task at each independent scale, from fine to coarse, respec-
tively. Results are shown for the first four scales only because there was no meaningful (signif-
icant) information at the fifth (coarsest) scale. For each task, the bar graph shows the proportion
of the total face area that was used at each scale.

Identify

Emotion

Gender

Schyns, P. G., Bonnar, L., & Gosselin, F. (2002). Show me the features! Understanding recognition from the use of visual information. 
Psychological Science, 13(5), 402-409. 



Grandmother Cell?
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435(7045), 1102-1107. 



RESULTS

Subjects saw the presentation of ambiguous morphed images
(e.g., a morph between presidents Bill Clinton and George
Bush) preceded by an adaptor (the picture of Clinton or the
one of Bush) and had to respond whether the ambiguous picture
corresponded to one or the other (Figure 1A). Figure 1B shows
the overall behavioral responses obtained in 21 experimental
sessions with ten subjects for the three degrees of morphing
used. In agreement with previous work (Leopold et al., 2005),
subjects tended to identify the ambiguous morphed pictures
(M1, M2, and M3) as the opposite of the adaptor. That means,
for each morphing, the adaptation to picture A led to a signifi-
cantly higher recognition of the ambiguous picture as B (and
vice versa) (M1: p < 10!3; M2: p < 10!4; M3: p < 10!7; Wilcoxon
rank-sum test). This perceptual difference was larger for longer
presentations of the adaptors (Figure 1C).

Given the different perceptual outcomes using the same set
of ambiguous images, we then asked whether the firing of
single neurons in the medial temporal lobe was entirely driven
by visual features or whether it was modulated by the sub-
jects’ decision (picture A or B). Altogether, we obtained 81
significant responses (defined as a statistical significant
response to a specific face; see Experimental Procedures)
in 62 units (45 units with 1 response, 15 with 2, and 2 units
with 3 responses): 26 in the hippocampus, 20 in the entorhi-
nal cortex, 15 in the parahippocampal cortex, and 20 in the
amygdala.
Figure 2 shows the responses of a single unit in the hippocam-

pus during the adaptation paradigm. The neuron fired selectively
to actress Whoopi Goldberg (picture B) when shown without
morphing (100% B; mean: 7.37 spikes/s) and did not respond
to Bob Marley (100% A; mean: 3.87 spikes/s). The middle col-
umns (highlighted) show the responses to the morphed pictures

Figure 1. Behavioral Results
(A) Adaptation paradigm. The perception of an ambiguous morphed image (A/B) was biased by the previous presentation of one of the pictures used to generate

the morphing (picture A or picture B). The task of the subjects was to respond whether they recognized the ambiguous picture as A or B (here, presidents Bill

Clinton andGeorge Bush). (B) Mean percentage of trials in which subjects recognized the ambiguous image as B, when previously adapted to picture A (blue) or B

(red). For comparison, the responses to the nonambiguous picture presentations (100% A and 100% B, likewise preceded by the adaptors) are also shown. (C)

Same as (B) but separating between the 1–1.5 s and the 4 s presentation of the adaptors. The longer presentation of the adaptors led to a larger perceptual bias,

namely the tendency to recognize the morphed picture as B when adapted to A (and vice versa). Error bars denote SEM.
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Main Points

• Faces are important 

• Different Features play different roles 

• Eyes and Mouth are important 

• The brain has special areas for faces
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Color Perception
It’s in your mind



Why should we even see color? 
• Detection 

• Make objects stand out  

• Make objects “invisible” 

• Discrimination 

• Separate objects 

• Identification 

• Decide what an object is



Basic Principle

Light has no color!
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FIG. 1. DISKS FOR THE PRODUCTION OF THE SUBJECTIVE COLORS.
Figs, la, Ib, Ic, Fechner; Fig. Id, Dove; Fig. le, John Smith; Figs. If , Ig, Rood;

Figs. lh, li, Helmholtz; Figs. Ij, Ik, 11, Briicke.
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FIG. 1. (CONTINUED). DISKS FOR THE PRODUCTION OF THE SUBJECTIVE COLORS.
Fig. 1m, Benham; Figs. In, lo, Finnegan and Moore; Figs. lp, Iq, Ir, Hurst; Figs. Is,

It, Wolf; Fig. lu, Bidwell; Figs. Iv, Iw, Ix, Bagley.
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Physical Properties of Light

• Intensity 

• Dominant Wavelength 

• Colormetric Purity



Color Experience has 
Three Dimensions

• Hue 

• Saturation 

• Brightness



Where Does Color Come From?

• Three Stages 

• Stage 1 cone mechanisms (color mixing and matching) 

• Stage 2: color-discrimination mechanisms 

• Stage 3: color appearance mechanisms



Three Stages of Color Vision

Stockman, A., & Brainard, D. H. (2010). Color Vision Mechanisms. In M. Bass, J. M. Enoch, & V. Lakshminarayanan (Eds.), The Optical Society of America Handbook of Optics (3rd ed., Vol. Volume III: Vision and Vision Optics, pp. 11.11–11.104). New York: McGraw-Hill.
Brainard, D. H., & Stockman, A. (2010). Colorimetry. In M. Bass, J. M. Enoch, & V. Lakshminarayanan (Eds.), The Optical Society of America Handbook of Optics (3rd ed., Vol. Volume III: Vision and Vision Optics, pp. 10.11–10.56). New York: McGraw-Hill.
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panels). Stage 1: L- (red line), M- (green line), and S- (blue line) cone fundamental spectral sensitivities.28 Stage 2: L–M 
(red line), M–L (green line), S–(L+M) (blue line), and (L+M)–S (yellow line) cone-opponent mechanism spectral 
sensitivities. Stage 3: R/G (red line), G/R (green line), B/Y (blue line), Y/B (yellow line) color-opponent spectral sensi-
tivities. Our derivation of the cone-opponent and color-opponent spectral sensitivities is described in the subsection 
“Three-Stage Zone Models” in Sec. 11.6. The dashed lines in the lower right panel are versions of the B/Y and Y/B 
color-opponent spectral sensitivities adjusted so that the Y and B spectral sensitivity poles are equal in area. The wave-
lengths of the zero crossings of the Stage 2 and Stage 3 mechanisms are given in the figure. The spectral sensitivities of 
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• Receptor Stage (Color Matching) 

• Three Types of Cones (S, M, L) 

• Need Three Primaries (R, G, B) 

• Stage 2 Cone Opponent Processes (Discrimination) 

• Red-Green Opponent Process 

• Yellow-Blue Opponent Process 

• Luminance Process 

• Stage 3 Color Opponent Processes (Appearance) 

• Red-Green 

• Yellow-Blue



Three Stages of Color Vision
• Receptor Stage (Color Matching) 

• Three Types of Cones (S, M, L) 

• Need Three Primaries (R, G, B) 

• Stage 2 Cone Opponent Processes (Discrimination) 

• Red-Green Opponent Process 

• Yellow-Blue Opponent Process 

• Luminance Process 

• Stage 3 Color Opponent Processes (Appearance) 

• Red-Green 

• Yellow-Blue
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the achromatic mechanisms have been omitted.
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11.10  VISION AND VISION OPTICS

Figure 5 illustrates the broad mechanism concept. Figure 5a shows the L, M, and S cones. Each 
of these cones is a mechanism and satisfies several key properties. First, we conceive of each cone 
mechanism as providing a spatiotemporal representation of the retinal image, so that the mechanism 
output may be regarded as a spatial array that changes over time. Second, at a single location and 
time, the output of each cone mechanism is univariate and conveys only a single scalar quantity. This 
means that the output of a single cone mechanism confounds changes in the relative spectrum of the 
light input with the overall intensity of the spectral distribution. Third, the relation between mecha-
nism input and output is subject to adaptation. This is indicated in the figure by the open circle along 
the output pathway for each cone mechanism. Often the adaptation is characterized as a gain con-
trol, or a gain control coupled with a term that subtracts steady-state input (e.g., Refs. 38 and 39).

(a)

(b)

L

M

S

Lout

Mout

Sout

Lout L + M

L – M

S – (L + M)

Mout

Sout

FIGURE 5 Basic mechanisms. (a) First-stage cone mechanisms: L, M, and S. The 
cone outputs are subject to some form of gain control (open circles), which can, in 
principle, be modified by signals from the same or from different cone mecha-
nisms. (b) Second-stage color-discrimination mechanisms: L+M, L–M, and S–(L+M). 
The inputs to these mechanisms are the adapted cone outputs from the cone mecha-
nisms. As with the cone mechanisms, the outputs of the second-stage mechanism are 
subject to some gain control, which can be modified by signals from the same or from 
different second-stage mechanisms. Dashed arrows indicate inhibitory outputs.
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Dimensions of Color: Hue





Receptor Stage: Color 
Matching 

Tristimulus Values
Tristimulus X, Y, Z 



P1
+
P2
+
P3

C1

Color Matching
• Bipartite Field 

• Need only 3 primaries to match any 
color 

• Primaries must not be matched by 
mixture of the other two 

• Many possible sets of primaries 

• C.I.E. Tristimulus values (X, Y, Z)





Receptor Stage: Matching

• Three Cone Types: S, M, L 

• Two Colors will appear identical when they evoke the same 
response pattern in the three cone types 

• C.I.E. Tristimulus Values: X, Y, Z 

• C.I.E. Chromaticity Coordinates: x, y, z



Receptor Stage: Color Matching 
Tristimulus Values

C1 ≡ 1X + 2Y + 3Z
C2 ≡ 3X +1Y +1Z

C1+2 ≡ 4 X + 3Y + 4Z



Receptor Stage: Color Matching 
Tristimulus Values

C1 ≡ 0.45X +1.05Y + 0.50Z
C2 ≡ 1.35X + 3.15Y +1.50Z

C1+2 ≡ 1.80X + 4.20Y + 2.00Z



C.I.E. Chromaticity: 
Relative amount of X, Y, Z Tristimulus Values

x = X
X +Y + Z

y = Y
X +Y + Z

z = Z
X +Y + Z



Receptor Stage: Color Matching 
Chromaticity Coordinates

x = X
X +Y + Z

y = Y
X +Y + Z

z = Z
X +Y + Z

10.22  VISION
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FIGURE 8 CIE 1931 xy chromaticity diagram. (a) A perspective 
view of the CIE 1931 XYZ tristimulus space. The ray shows a locus of 
points with constant chromaticity coordinates. The actual chromaticity 
coordinates for each ray are determined by where the ray intersects the 
plane described by the equation X + Y + Z = 1. This plane is indicated. 
The X and Y tristimulus values at the point of intersection are the x and 
y chromaticity coordinates for the ray. (b) The chromaticity coordinates 
of an equal energy spectrum with the interior colored to provide a 
rough indication of the color appearance of a stimulus of each chroma-
ticity when viewed in a neutral context.
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Three Stages of Color Vision
• Receptor Stage (Color Matching) 

• Three Types of Cones (S, M, L) 

• Need Three Primaries (R, G, B) 

• Stage 2 Cone Opponent Processes (Discrimination) 

• Red-Green Opponent Process 

• Yellow-Blue Opponent Process 

• Luminance Process 

• Stage 3 Color Opponent Processes (Appearance) 

• Red-Green 

• Yellow-Blue
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FIGURE 4 Version of the three-stage Müller zone model with updated spectral sensitivities. The panels shows 
the assumed spectral sensitivities of the color mechanisms at Stages 1 (upper panel), 2 (middle panels), and 3 (lower 
panels). Stage 1: L- (red line), M- (green line), and S- (blue line) cone fundamental spectral sensitivities.28 Stage 2: L–M 
(red line), M–L (green line), S–(L+M) (blue line), and (L+M)–S (yellow line) cone-opponent mechanism spectral 
sensitivities. Stage 3: R/G (red line), G/R (green line), B/Y (blue line), Y/B (yellow line) color-opponent spectral sensi-
tivities. Our derivation of the cone-opponent and color-opponent spectral sensitivities is described in the subsection 
“Three-Stage Zone Models” in Sec. 11.6. The dashed lines in the lower right panel are versions of the B/Y and Y/B 
color-opponent spectral sensitivities adjusted so that the Y and B spectral sensitivity poles are equal in area. The wave-
lengths of the zero crossings of the Stage 2 and Stage 3 mechanisms are given in the figure. The spectral sensitivities of 
the achromatic mechanisms have been omitted.

Bass_v3ch11_p001-104.indd   11.7Bass_v3ch11_p001-104.indd   11.7 8/21/09   6:49:51 PM8/21/09   6:49:51 PM



Three Stages of Color Vision
COLOR VISION MECHANISMS  11.7

R
el

at
iv

e
qu

an
ta

l
se

ns
it

iv
it

y

Wavelength (nm)

400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

Stage 1

400 500 600 700
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

477 nm

580 nm

400 500 600 700

–2

–1

0

1

2

400 500 600 700
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

549 nm

400 500 600 700
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

486 nm

Stage 2

Stage 3

504 nm
510 nm
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“Three-Stage Zone Models” in Sec. 11.6. The dashed lines in the lower right panel are versions of the B/Y and Y/B 
color-opponent spectral sensitivities adjusted so that the Y and B spectral sensitivity poles are equal in area. The wave-
lengths of the zero crossings of the Stage 2 and Stage 3 mechanisms are given in the figure. The spectral sensitivities of 
the achromatic mechanisms have been omitted.
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Figure 5 illustrates the broad mechanism concept. Figure 5a shows the L, M, and S cones. Each 
of these cones is a mechanism and satisfies several key properties. First, we conceive of each cone 
mechanism as providing a spatiotemporal representation of the retinal image, so that the mechanism 
output may be regarded as a spatial array that changes over time. Second, at a single location and 
time, the output of each cone mechanism is univariate and conveys only a single scalar quantity. This 
means that the output of a single cone mechanism confounds changes in the relative spectrum of the 
light input with the overall intensity of the spectral distribution. Third, the relation between mecha-
nism input and output is subject to adaptation. This is indicated in the figure by the open circle along 
the output pathway for each cone mechanism. Often the adaptation is characterized as a gain con-
trol, or a gain control coupled with a term that subtracts steady-state input (e.g., Refs. 38 and 39).

(a)

(b)

L

M

S

Lout

Mout

Sout

Lout L + M

L – M

S – (L + M)

Mout

Sout

FIGURE 5 Basic mechanisms. (a) First-stage cone mechanisms: L, M, and S. The 
cone outputs are subject to some form of gain control (open circles), which can, in 
principle, be modified by signals from the same or from different cone mecha-
nisms. (b) Second-stage color-discrimination mechanisms: L+M, L–M, and S–(L+M). 
The inputs to these mechanisms are the adapted cone outputs from the cone mecha-
nisms. As with the cone mechanisms, the outputs of the second-stage mechanism are 
subject to some gain control, which can be modified by signals from the same or from 
different second-stage mechanisms. Dashed arrows indicate inhibitory outputs.
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• Receptor Stage (Color Matching) 

• Three Types of Cones (S, M, L) 

• Need Three Primaries (R, G, B) 

• Stage 2 Cone Opponent Processes (Discrimination) 

• Red-Green Opponent Process 

• Yellow-Blue Opponent Process 

• Luminance Process 

• Stage 3 Color Opponent Processes (Appearance) 

• Red-Green 

• Yellow-Blue
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lengths of the zero crossings of the Stage 2 and Stage 3 mechanisms are given in the figure. The spectral sensitivities of 
the achromatic mechanisms have been omitted.
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complexity of natural retinal stimulation must be a high priority. At the same time, this is a daunt-
ing problem because of the explosion in stimulus parameters and the difficulties in controlling them 
adequately that occur when arbitrary spatiotemporal patterns are considered for both test and field.

Finally, we do not know whether models of this sort can provide a unified account of data across 
a wider range of tasks than simple threshold and appearance judgments.

Despite these unknowns and limitations, the type of three-stage model described here provides 
a framework for moving forward. It remains to be seen whether a model of this type will eventually 
provide a unified account of a wide range data, or whether what will be required, as was the case with 
Stiles’ p-mechanism model which preceded it, is a reconceptualization of the nature of the psycho-
physical mechanisms and/or the linking hypotheses that connect them to behavioral data.
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Afterimages

• Afterimages based on complimentary colors.  

• Keep looking at the same spot in the center of the picture for 20 
seconds. 

• Look at a white surface: what do you see?

































Color Processing
Black and White Stream 
Red and Green Stream 
Yellow and Blue Stream



http://www.johnsadowski.com/color_illusion_tutorial.html

John Sadowski

http://www.johnsadowski.com/color_illusion_tutorial.html






McCollough Effect

Celeste McCollough Howard (1927–  )

McCollough, C. (1965). Color adaptation of edge-detectors in the human visual system. Science, 149, 1115–1116. 
McCollough, C. (1965). The conditioning of color perception. American Journal of Psychology, 78(3), 362–378. 









The Color Wheel

• Relative amounts of r/g and y/b contribution 

• Two colors on opposite sides of the wheel 

• Two colors on opposite sides of the color wheel, 
which when placed next to each other make 
both appear brighter.



“Color Blindness”

• Trichromacy: 3 primaries to match all colors 

• Dichromacy: 2 primaries to match all colors 

• Monocromacy:1 primary to match all colors



Dichromacy
• Protanopia 

• Missing L-cone pigment (X chromosome) 

• Neutral point at 498nm 

• Deuteranopia 

• Missing M-cone pigment (X chromosome) 

• Neutral point at 502 nm 

• Tritanopia (chromosome 7) 

• No single wavelength neutral point
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Fig. 5. Results of the experiment on bi-
nocular color matching. The wavelengths
seen by the color-blind eye (left scale) are
matched by the indicated wavelengths in
the normal eye (right scale).

of about 570 mg in the normal eye.
Wavelengths shorter than the neutral
point in the dichromatic eye are matched
in the normal eye by a blue at about 470
mit. Thus the two sides of the spectrum
below and above the neutral point are
seen, respectively, as a blue equivalent to
about 470 man and a yellow equivalent
to about 570 mj in the trichromatic
eye (27). These results are in accord
with the data of several earlier experi-
ments on unilaterally color-blind sub-
jects as summarized by Judd (20).
Hue discrimination. Hue discrimina-

tion curves show how the just noticeable
difference in wavelength, AX, varies with
wavelength. Such data were obtained on
our unilaterally color-blind subject by
means of a modified Helmholtz color
mixer (14). Careful attention was paid
to making appropriate intensity adjust-
ments so that all wavelength discrimina-
tions were obtained at the same constant
level of luminance throughout the spec-
trum. A curve was obtained on each eye
of our subject. The curves are presented
in Fig. 6.

In general, the curve for the normal
eye does not seem to be greatly different
from the usual hue discrimination curve
obtained on normal individuals (28).
The poorest discrimination, as shown by
28 MARCH 1958

the largest AI, takes place in the red.
Minima occur in the middle range of
wavelengths; and our subject shows espe-
cially low thresholds in this range. It is
quite clear that the normal eye of our
subject does not show defective hue dis-
crimination.
The curve for the left eye, the color-

blind eye, is an entirely different func-
tion. In the violet the curve shows some
insensitivity to wavelength change, but
near 450 mg it shows a great rise in AX,
indicating very poor hue discrimination.
Discrimination improves to a minimum
threshold value near 500 myt, in the
region of the neutral point; thereafter
AX rises to very high values near 600 my.
The behavior of hue discrimination in
the spectral region from 500 to 750 mg
is similar to that found in the usual deu-
teranope (11, 28).

Color mixture. The final set of results
given by our subject are her data on
color mixture (29). One way of specify-
ing the data of color mixture is in terms
of the trichromatic coefficients. Any
color, including a spectral color, can be
specified in terms of three numbers. Since
the numbers add to unity, the position
of a color on a two-dimensional grid, the
chromaticity diagram, is uniquely speci-
fied when two of the coefficients are
known. Each trichromatic coefficient rep-
resents the percentage contribution of
one of three primaries in providing a
match for a given color. A plot of the
trichromatic coefficients against wave-
length results in a graph of the sort shown
in the upper graph of Fig. 7. In this
graph the three ordinate values at each
wavelength value represent the amounts
of the three primaries as percentages of
the unit color (more exactly, chromatic-
ity) of the wavelength.
The curves of the upper figure are the

data for our subject's normal eye (30).
In these curves, a negative trichromatic
coefficient means simply that a particular
primary is combined with the test wave-
length to match the two remaining pri-
maries. The curves are to be contrasted
with Wright's well-known results (28,
31), on ten normal eyes as represented
by the dashed lines.
Our primaries are the same as

Wright's: 460, 530, and 650 mg. The
units for the red and green primaries
have been so specified that they are taken
to be equal at 582.5 mit, while the green
and blue primaries are equal for the
match at 494 mjt. Our color-blind sub-
ject's normal eye gives, except for minor
differences, the same sort of color mix-

ture data as are represented in Wright's
data. In addition, it can be stated that
the relative luminance values of the pri-
maries for matches at 582.5 and 494 mg
are comparable to those reported by
Wright.
The data for our subject's color-blind

eye, shown at the bottom of Fig. 7, are
entirely different from the data for the
normal eye. The graph shows that our
subject can match any wavelength of
the spectrum with a combination of two
primaries, 460 and 650 mt (the units
being taken as equal at 494 myt). The
dashed line represents Pitt's data (11) on
the color mixture of deuteranopes.
The open and solid circles indicate

two different types of result that were
obtained in the short wavelength region
depending on the method used. (i) If
the subject matched a given short wave-
length by a mixture of the two primaries,
460 and 650 mit, then the results are as
given by the solid-circle curves. They
show that, as wavelength decreases be-
low 460 m>t, more and more of the red
primary must be added to the blue pri-
exhibited by Pitt's subjects. It should be
show the small degree of negative red
results, even though our subject did not
much closer to Pitt's data than are our
shown by the open circles. This result is
primaries, the result is different, as is
to match the mixture of red and blue
test light is mixed with the red primary
performed by Pitt's method, in which the
approach 410 m". (ii) If mixtures were
become less and less saturated as they
colors at the blue end of the spectrum
mary to make a match. In a word, the

'0<

30

-400 50 a 70

'3aeerghm

Fig. 6. The hue discrimination of a uni-
laterally color-blind subject. The open
circles refer to data for the normal eye;
the filled circles, to data for the color-
blind eye.
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Fig. 5. Results of the experiment on bi-
nocular color matching. The wavelengths
seen by the color-blind eye (left scale) are
matched by the indicated wavelengths in
the normal eye (right scale).

of about 570 mg in the normal eye.
Wavelengths shorter than the neutral
point in the dichromatic eye are matched
in the normal eye by a blue at about 470
mit. Thus the two sides of the spectrum
below and above the neutral point are
seen, respectively, as a blue equivalent to
about 470 man and a yellow equivalent
to about 570 mj in the trichromatic
eye (27). These results are in accord
with the data of several earlier experi-
ments on unilaterally color-blind sub-
jects as summarized by Judd (20).
Hue discrimination. Hue discrimina-

tion curves show how the just noticeable
difference in wavelength, AX, varies with
wavelength. Such data were obtained on
our unilaterally color-blind subject by
means of a modified Helmholtz color
mixer (14). Careful attention was paid
to making appropriate intensity adjust-
ments so that all wavelength discrimina-
tions were obtained at the same constant
level of luminance throughout the spec-
trum. A curve was obtained on each eye
of our subject. The curves are presented
in Fig. 6.

In general, the curve for the normal
eye does not seem to be greatly different
from the usual hue discrimination curve
obtained on normal individuals (28).
The poorest discrimination, as shown by
28 MARCH 1958

the largest AI, takes place in the red.
Minima occur in the middle range of
wavelengths; and our subject shows espe-
cially low thresholds in this range. It is
quite clear that the normal eye of our
subject does not show defective hue dis-
crimination.
The curve for the left eye, the color-

blind eye, is an entirely different func-
tion. In the violet the curve shows some
insensitivity to wavelength change, but
near 450 mg it shows a great rise in AX,
indicating very poor hue discrimination.
Discrimination improves to a minimum
threshold value near 500 myt, in the
region of the neutral point; thereafter
AX rises to very high values near 600 my.
The behavior of hue discrimination in
the spectral region from 500 to 750 mg
is similar to that found in the usual deu-
teranope (11, 28).

Color mixture. The final set of results
given by our subject are her data on
color mixture (29). One way of specify-
ing the data of color mixture is in terms
of the trichromatic coefficients. Any
color, including a spectral color, can be
specified in terms of three numbers. Since
the numbers add to unity, the position
of a color on a two-dimensional grid, the
chromaticity diagram, is uniquely speci-
fied when two of the coefficients are
known. Each trichromatic coefficient rep-
resents the percentage contribution of
one of three primaries in providing a
match for a given color. A plot of the
trichromatic coefficients against wave-
length results in a graph of the sort shown
in the upper graph of Fig. 7. In this
graph the three ordinate values at each
wavelength value represent the amounts
of the three primaries as percentages of
the unit color (more exactly, chromatic-
ity) of the wavelength.
The curves of the upper figure are the

data for our subject's normal eye (30).
In these curves, a negative trichromatic
coefficient means simply that a particular
primary is combined with the test wave-
length to match the two remaining pri-
maries. The curves are to be contrasted
with Wright's well-known results (28,
31), on ten normal eyes as represented
by the dashed lines.
Our primaries are the same as

Wright's: 460, 530, and 650 mg. The
units for the red and green primaries
have been so specified that they are taken
to be equal at 582.5 mit, while the green
and blue primaries are equal for the
match at 494 mjt. Our color-blind sub-
ject's normal eye gives, except for minor
differences, the same sort of color mix-

ture data as are represented in Wright's
data. In addition, it can be stated that
the relative luminance values of the pri-
maries for matches at 582.5 and 494 mg
are comparable to those reported by
Wright.
The data for our subject's color-blind

eye, shown at the bottom of Fig. 7, are
entirely different from the data for the
normal eye. The graph shows that our
subject can match any wavelength of
the spectrum with a combination of two
primaries, 460 and 650 mt (the units
being taken as equal at 494 myt). The
dashed line represents Pitt's data (11) on
the color mixture of deuteranopes.
The open and solid circles indicate

two different types of result that were
obtained in the short wavelength region
depending on the method used. (i) If
the subject matched a given short wave-
length by a mixture of the two primaries,
460 and 650 mit, then the results are as
given by the solid-circle curves. They
show that, as wavelength decreases be-
low 460 m>t, more and more of the red
primary must be added to the blue pri-
exhibited by Pitt's subjects. It should be
show the small degree of negative red
results, even though our subject did not
much closer to Pitt's data than are our
shown by the open circles. This result is
primaries, the result is different, as is
to match the mixture of red and blue
test light is mixed with the red primary
performed by Pitt's method, in which the
approach 410 m". (ii) If mixtures were
become less and less saturated as they
colors at the blue end of the spectrum
mary to make a match. In a word, the
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Fig. 6. The hue discrimination of a uni-
laterally color-blind subject. The open
circles refer to data for the normal eye;
the filled circles, to data for the color-
blind eye.
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Conclusions
• Vision invokes all levels of neuroscience 

• Molecular 

• Cellular 

• Systems 

• Behavioral



Conclusions
• Some visual functions are well-understood 

• Neural organization of retina 

• Color Vision (behavioral) 

• Many visual functions are not well-understood 

• Color Vision (systems) 

• Object Recognition 

• Conscious Experience



Levels of Understanding
• Molecular 

• Cellular 

• Systems 

• Behavioral 

• We want it all!



The End


