Vision

PSYC 5665 - Prosem
Lew Harvey
28 October 2020

Main Points

- "Light" is energy
- "Light" is an experience
- The core of vision science is to understand the relationship between these two domains.

Levels of Understanding

- Molecular
- Cellular
- Systems
- Behavioral
- We want it all!

Light as Energy

Light as Energy

- Quanta
- Only one property
- Energy (E)
- Frequency (nu)
- Wavelength (lambda)
$E=h \cdot v$ Planck-Einstein
$c=\lambda \cdot v$
$E=\frac{c \cdot h}{\lambda}$
- Light has no color

Black Body Radiator

Black Body Radiator

Light Energy Interacts with Matter

- Reflected
- Transmitted
- Absorbed

Visible Spectra

Fig. 4. Spectra of the back of the hand.

How The Eye Works

- Optical instrument
- Cornea and lens
- Neural information processor
- Retina - a complex network of neurons

Optics of the Eye: René Descartes (1596-1650)

Figure 1 Descartes' diagram of the formation of images on the retinae of the eyes and the paths of transmission in the visual nervous system.

The Visual System

The Eyes in the Head

The Normal Eye

Optics of the Eye

- Focal Length of a lens
- Optical Power in dioptres
- Relative Optical Power in dioptres
- Far Point, Near Point, Resting Point

Problems with the Optics

- Where is the far point?
- At optical infinity (Emmetropia)
- Closer than infinity (Myopia)
- Farther than infinity (Hyperopia)
- Cataract
- Astigmatism
- Resting Point

The normal appearance of the crystalline lens at the bottom and the anterior chamber of the eye above this is shown here. The lens becomes progressively less elastic and distensible with age. This is known as presbyopia because there is diminution of the power of accommodation with greater difficulty focusing at close distances.

Hence, the need for bifocals starting in their 40's for many people.

Loss of Accommodation Power: Presbyopia

Franciscus Cornelis Donders 1818-1889

Cataracts

This is a cataract. A cataract results from opacification of the crystalline lens. This opacification results from a series of events starting in the lens cortex with rarefaction, then liquefecation, of cortical cells. This leads to fragmentation of lens fibers and extracellular globule formation. In the lens nucleus there is a progressive increase in the amount of insoluble proteins which leads to hardening (sclerosis) and brownish discoloration (brunescence).

Cataracts

On cross-section of the eyeball can be seen a lens at the right which contains a cataract. Cataracts are more common in the elderly and in persons with diabetes mellitus. Such cataracts can be removed and replaced by a lens implant.

Astigmatism

Lewis Harvey
Patient ID:
EyeSys

Resting Point

Leibowitz, H. W., \& Owens, D. A. (1975). Night myopia and the intermediate dark
focus of accommodation. Journal of the Optical Society of America,

Resting Focus of the Eye

The Normal Retina

Three Layers, Five Cells

- Photoreceptors
- Bipolar Cells
- Retinal Ganglion Cells
- Horizontal Cells
- Amacrine Cells

The normal histologic appearance of the retina shows many layers. The lowest layer just above the connective tissue is the layer of rods and cones. Above this are layers of external and internal plexiform and nuclear lamina. The nerve fibers are at the top and collect together to enter the optic nerve at the optic disk.

FIGURE 26.2 Summary diagram of the cell types and connections in the primate retina. R, rod; $\mathrm{C}, \mathrm{cone} ; \mathrm{H}$, horizontal cell; FMB, flat midget bipolar; IMB, invaginating midget bipolar; IDB, invaginating diffuse bipolar; RB, rod bipolar; A, amacrine cell; P, parasol cell (also confusingly called an M cell because of its thalamic targets, see text for details); MG, midget ganglion cell (also confusingly called a P cell). Adapted from Dowling (1997).

Rod

Østerberg (1935)

Foveal Mosaic

Photopic vs. Scotopic Vision

Liang, Williams, \& Miller (1997)

AN 1 deg nasal

AN
Nasal

Monkey
Nasal

Principle of Univariance

- A receptor signals the number of quanta (or the rate) absorbed. It can not signal the wavelength of the quanta.
- All wavelengths cause the same voltage change when they are absorbed
- 700 microvolts per quantum for rods
- 25 or smaller microvolts per quantum for cones

What Can We Do with Psychometric Functions?

- Answer questions about sensory processes
- What is the minimum amount of energy needed for "seeing?"
- Hecht, Shlaer, \& Pirenne (1942)

Psychometric Function

Hecht, S., Shlaer, S., \& Pirenne, M. H. (1942). Energy, quanta, and vision. Journal of General Physiology, 25(6), 819840.

Poisson Probability Distribution

$$
\begin{aligned}
& p(n: \lambda)=\frac{\lambda^{n} e^{-\lambda}}{n!} \\
& \lambda>0, \quad n=0,1,2,3 \ldots
\end{aligned}
$$

$$
\begin{aligned}
\text { Mean } & =\mu=\lambda \\
\text { Variance } & =\sigma^{2}=\lambda
\end{aligned}
$$

Standard Deviation $=\sigma=\sqrt{\lambda}$

Poisson Process

Poisson Process

Observed Frequencies

Observed Probabilities

Theoretical Poisson Distribution

Poisson Probability Distributions

Poisson Psychometric Functions

Theory vs. Data

Fit of Data to Theory

Fits of Models

Data from Table V

	SH1	SH2	SS1	SS2	MPH
No. Quanta	8	6	7	10	4
Chi-Square	2.1862	1.8612	0.9524	1.2316	4.6696
DF	4	4	4	4	4
Probability	0.7016	0.7613	0.9169	0.9729	0.3229
Alpha	1.2475	1.2813	1.1058	0.9285	1.5253
Quantum Eff	0.0566	0.0523	0.0784	0.1179	0.0298

Conclusions

- You need 4-10 photons to be absorbed by receptors to "see"
- Quantum efficiency is between 5 and 10 percent

Main Points

- Duplex Retina
- 1 Type of Rod Receptor - Scotopic Vision
- 3 Types of Cone Receptors (S, M, L) - Photopic Vision
- Receptors can only signal rate of quantal absorption

Receptive Fields

Haldan Keffer Hartline 22 December 1903-17 March 1983

"Spatial effects. No description of the optic responses in single fibers would be complete without a description of the region of the retina which must be illuminated in order to obtain a response in any given fiber. This region will be termed the receptive field of the fiber."

Hartline, H. K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. American Journal of Physiology, 121(2), 400-415

Ganglion Cell Receptive Fields

On-Center, Off-Surround Ganglion Cell

 Receptive FieldResponse Surface
(a)

(b)

FIG.4. Gaussian fit to spatial profile of on BT cell's mean effective stimulus. A : mean effective stimulus at its peak 125 ms before spike.

Distance from left edge

Hermann Grid

Enhanced Hermann Grid

Perceptive Fields

Fig. 2. Centre size (lower curves) and total perceptive field size (upper curves) as a function of eccentricity for both subjects. Values were derived from the curves shown in Fig. 1. Total perceptive field size, given as the range between the two arrows in Fig. 1, increases much more rapidly than centre size. There appears to be a region between 10 and 30° where the total field size remains rela tively constant.

Perceptive Fields

Fig. 7. Perceptive field and perceptive field centre sizes from Fig. 2 are replotted (bold lines). Estimates by other authors of centre (solid symbols) and fields (open symbols) are given for comparison. Curves are labelled with the procedure, and authors are shown next to their respective symbols. For details see text. Neurophysiological estimates of the size of the centres of retinal ganglion cells in the spider monkey (x) are included.

Nice Theory, but...

Figure 3. (a) Classic Hermann grid. (b) The illusory effect is reduced when the grid is rotated by 45°.

Fig. 9. Patterns made up of wavy bars. (A) Weaves and (B) Hermann grid. The spots for the weaves are barely affected by the wavy pattern, but the spots for the Hermann grid are nearly absent (see also Geier et al., 2004, 2008)

Ninio, J., \& Stevens, K. A. (2000). Variations on the Hermann Grid: An Extinction Illusion. Perception, 29(10), 1209-1217. doi: 10.1068/p2985

The Perpetual Diamond

http://illusionscience.com/the-perpetual-diamond/

The Perpetual Diamond

We Don't See the Stimulus

- We see the result of neural/perceptual processes

The Visual Brain

Andreas Vesalius (1514-1564)

De humani corporis fabrica libri septem (1543)

Localization of Function

René Descartes (1595-1650)

Visual Pathways, circa 1967

Visual Pathways, circa 1974

Visual Pathways, circa 1991

Felleman, D. J., \& Van Essen, D. C. (1991).
Distributed Hierarchical Processing in Cortex, 1(1), 1-47. doi: 10.1093/cercor/ 1.1.1

Brain Networks, circa 2016 Lots of fluctuating activity in the normal brain

Brain Networks, circa 2016 Default Mode Network (DMN)

Activity "At Rest"

Videos created by Andrew E. Reineberg Department of Psychology and Neuroscience

University of Colorado Boulder

Brain Networks, circa 2016
Default Mode Network (DMN) Activity "At Rest"

Brain Networks, circa 2016 Default Mode Network (DMN)
 Activity is Suppressed when Doing Tasks

Brain Networks, circa 2016 Multiple Networks

Neural Organization

- Component Dominant
- Modules
- Interaction Dominant
- Emergent Properties

Interaction Organization

naturevideo

naturevideo

Retinotopic Mapping

- Retina to LGN to Cortex
- Nonlinear
- Cortical Magnification Factor: $\mathrm{M}=\mathrm{mmCortex}$ / mmRetina
- $M=$ Around 11-13 in Fovea

Lateral Geniculate Nucleus

- Parvocellular
- Magnocellular
- Koniocellular

Lateral Geniculate Nucleus

- Parvocellular
- high spatial resolution
- color vision
- Magnocellular
- low spatial resolution
- high temporal res.
- Koniocellular
- high spatial resolution
- color vision

Topographical Mapping

Functional Significance

- Selective Damage
- Complex Logarithmic Mapping
- Orientation vs Spatial Frequency

Binocular Visual Field

Scotomata

Scotomata

Visual Field Scotoma: A-178

Figure 19a. Case A-178. Right homonymous hemianopia, with irregular defect extending into homonymous left lower quadrants, and arc-shaped defect surrounding the central part of the field. These field defects resulted from a rifle bullet which entered the left midparietal region and traversed the posterior brain substance, making its exit in the right occipital region, 1 cm . to the right of the occipital protuberance.

Visual Field Scotoma: A-178 Visual Field Scotoma: A-178

Figures 19b-d. Appearance of the head (case 'A-178), following surgical removal of fragments from the left midparietal region and the right and left occipital areas,

Visual Field Scotoma: A-67 Homonymous Hemianopia: A-67

Figure 16a. Case A-67. Left homonymous hemianopia combined with arc-shaped defect forming a half-ring surrounding the right homonymous half of the macular region. This patient was injured by a rifle bullet penetrating the occiput. In the right half-field outside the crescent. fluctuation of targets was marked and stationary targets disappeared within $2-3 \mathrm{sec}$. Fusion thresholds for flickering light were markedly reduced in the foveal region (i.e., within the arc), and even more so in the right peripheral fields. Apparent movement was reported by this patient when one stationary target was placed inside and another outside the arc-shaped scotoma, and the two targets were illyminated in alternation (see text, pp. 84-86). Snellen acuity: OS 20/100, OD 20/70.

Foveal Sparing: A-29

Figure 13a. Case A_{-}29. Extreme instance of concentric contraction, resulting in bilateral hemianopia with irregular macular sparing (peephole vision). Areas in black were blind for hand motion on the perimeter. This unusual type of field defect was the result of a through-and-through bullet wound of the head entering 1 cm . above the pinna of the left ear and making its exit in the right occipital region about 2 cm . above the protuberance and 3 cm . lateral to it.

Hemidecussation of the Retina

Figs. 4A,B Foveal regions of the retinas of figure 3 A
tion. In each retina the arrow points to the optic disc

Hemidecussation of the Retina

Fig. 8 A: Schematic drawing of the foveal region of the right retina in figure 3A. The outline of the foveola is drawn in and the areas lacking and containing ganglion cells are open and hatched, respectively. The border between these two areas is marked as a line. B: Analogous draw ing for the left retina of the same animal. C: The drawing in B reversed left-to-right. $D: A$ and C superimposed. The outlines of the foveolae are matched as closely as possible and the lines are made as close to parallel as possible. This figure here with double hatching.

Measuring Left \& Right RT

Left and Right RT

Crossed and Uncrossed RT

Occular Dominance Stripes

Nonlinear Mapping

Blobs and Stripes

Orientation Tuning in Cortex

David Hubel and Torsten Wiesel

Orientation Tuning in Area 17

Sequence Regularity

Receptive Fields in Cortex

Colin Blakemore

Effect of Experience

Retina-Cortical Mapping

Retina-Cortical Mapping

Retina-Cortical Mapping

Visual Field

Visual Cortex

Retina-Cortical Mapping

Mapping of Movement

Shifts of Attention

Shifts of Attention

Figure 5. Temporal differences in attention-related activity for pairs of cortical areas. Arrows indicate significant differences in functional connectivity between attention and fixation. Black arrows represent top-down flow of attention signals, and the gray arrow indicates a bottom-up relationship between V2 and V3.

Break

Spatial Vision and the Contrast Sensitivity Function

Spatial Vision

- Detecting Contrast
- Detecting Orientation

Fourier Transform

Transform space or time into frequency

What is a Transform?

- A rule or set of rules for turning one set of numbers into another set of numbers
- Many transforms are reversible
- Some transforms are not reversible

N	$\log N$
1	0
2	0.301
3	0.4771
4	0.6021
5	0.699
6	0.7782
7	0.8451
8	0.9031

Why Transform?

To meet the assumptions of psychological models.

Jean Baptiste Joseph Fourier

- Born:
- 21 March 1768, Auxerre, France
- Died:
- 16 May 1830, Paris, France

The Fourier Transform

On the Propagation of Heat in Solid Bodies (1807)

t	$h(t)$
0	0
1	1.75
2	0.15
3	-0.14
4	0.23
5	-1.5
6	-0.82
7	1.65

f	$H(f)$
0	$1.33,0.00 i$
1	$3.33,-2.01 i$
2	$0.90,1.26 i$
3	$-3.80,-0.07 i$
4	$-2.19,0.00 i$
-3	$-3.80,0.07 i$
-2	$0.90,-1.26 i$
-1	$3.33,2.01 i$

The Fourier Transform

- $B(f, t)$ is called a basis function

$$
H(f)=\sum_{t=0}^{N-1} h(t) \cdot B(f, t)
$$

$$
\begin{aligned}
& t=\text { time } \\
& f=\text { frequency }
\end{aligned}
$$

- For the Fourier transform
- Basis function is a complex exponential function

$$
\begin{aligned}
& \text { Basis Function }=e^{-i \cdot 2 \pi \cdot t \cdot f} \\
& i=\sqrt{-1}
\end{aligned}
$$

Leonhard Euler

- Born:
- 15 April 1707, Basel, Switzerland
- Died:
- 18 Sept 1783, St. Petersburg, Russia

Leonhard Euler (1707-1783)

Worked out the relationship between
exponential functions and trigonometric functions

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Leonhard Euler (1707-1783)

The most beautiful equation in the world:

$$
e^{i \pi}=-1
$$

Leonhard Euler (1707-1783)

The most beautiful equation in the world:

$$
e^{i \pi}=-1
$$

$e \quad$ (irrational and transcendental)
$\pi \quad$ (irrational and transcendental)
i (imaginary number)

Leonhard Euler (1707-1783)

The most beautiful equation in the world:

$$
\begin{array}{ll}
e^{i \pi}=-1 \\
e & (\text { irrational and transcendental }) \\
\pi & (\text { irrational and transcendental }) \\
i & (\text { imaginary number }) \\
e^{i x}=\cos (x)+i \sin (x) \\
e^{i \pi}=\cos (\pi)+i \sin (\pi)
\end{array}
$$

Leonhard Euler (1707-1783)

The most beautiful equation in the world:

$$
\begin{aligned}
& \cos (\pi)=-1 \\
& \sin (\pi)=0 \\
& e^{i \pi}=\cos (\pi)+i \sin (\pi) \\
& e^{i \pi}=-1+i \cdot 0 \\
& e^{i \pi}=-1
\end{aligned}
$$

Power Spectrum

Spatial Frequencies: Gabor Patches

Med Low

IIII

Med High
High

Visual Angle

Visual Angle

Visual Angle...

- The angle subtended at the nodal point of the eye by the physical dimensions of an object in the visual field.

Cycles per Degree

- Distance of pattern from the observer in inches $=\mathrm{d}$
- Resolution of computer screen in pixels/inch = r
- Number of pixels per degree $=180 / \mathrm{pi}^{*} \mathrm{~d}^{*} \mathrm{r}$
- Number of sine cycles in ppd is the number of cycles per degree

Contrast Sensitivity

- The visual system is not equally sensitive to all spatial frequencies.
- Less sensitive to both low and high spatial frequencies

Contrast Sensitivity Function

Adaptation Paradigm

Spatial frequency mechanisms

$$
\text { Contrast }=\frac{\left(L_{\max }-L_{\min }\right)}{\left(L_{\max }+L_{\min }\right)}
$$

Contrast varies between 0 and 1

Threshold Contrast $=C_{t}$

Contrast Sensitivity $=\frac{1}{C_{t}}$

Vertical Masking Functions

CSFs of Various Animals

Fig. 2. Log contrast sensitivity as a function of horizontal (u) and vertical (v) spatial-frequency coordinates in cycles per degree of visual angle, with sinusoidal test gratings for observer VVD. The height of the surface represents contrast sensitivity: the reciprocal of the grating contrast required to achieve 75.5% correct on a 3AFC detection task.

Fig. 3. Isosensitivity contours of VVD's unmasked 2-D contrast sensitivity function plotted in the (u, v) spatial-frequency plane. The outer contour represents a sensitivity of 20 , and each contour is an increment of 0.2 log unit in sensitivity.

Fig. 4. Isosensitivity contours measured in the presence of an 8 -cpd mask, at 0.31 contrast for observer VVD. The ends of the straight line mark the spatial-frequency locus of the mask. Note that the contours are distorted in the region of the mask compared with Fig. 3. Masks were at polar angles of (A) 90.0 , (B) 105.0 , (C) 120.0 , (D) 135.0 , and (E) 180.0 deg

Fig. 5. Proportional threshold elevation contours in horizontal (u) and vertical (v) spatial-frequency space in the presence of an 8 -cpd, 0.31 contrast masking grating. The outer contour represents the locus of points where the threshold elevation decreases to $1 / e$ of its maximum; the second contour is the $1 / 2$ locus.

Frequency
 Domain

Space
 Domain

Fig. 10. Even kernel of the inverse Fourier transform of the proportion threshold elevation surface produced by the $8-\mathrm{cpd}, 90-\mathrm{deg}$ mask. The coordinate system is in degrees of visual angle, and the origin is in the center of the plane.

Fig. 11. Contour plots of the even kernel of the inverse Fourier transform of the proportional threshold elevation surfaces produced by an 8 cpd mask of 0.31 contrast. The solid contours show regions of excitation; the dashed contours show regions of inhibition. The short straight line represents the spatial period and orientation of the mask.

Fig. 12. Half-amplitude contours of the Gaussian envelope of the five Gabor functions fitted to each set of threshold elevation data. The dashed circle marks the 8 -cpd locus. The orientation of each line marks the polar orientation of the mask.

Dennis Gabor (1900-1979)

Gabor Function

$$
\begin{aligned}
G(x, y)= & c \exp \left[-\pi\left(x_{\phi}^{2} a^{2}+y_{\phi}^{2} b^{2}\right)\right] \\
& \times \exp \left\{-2 \pi i\left[u_{0}\left(x-x_{0}\right)+v_{0}\left(y-y_{0}\right)\right]\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& x_{\phi}=\left[\left(x-x_{0}\right) \cos (\phi)\right]+\left[\left(y-y_{0}\right) \sin (\phi)\right] \\
& y_{\phi}=-\left[\left(x-x_{0}\right) \sin (\phi)\right]+\left[\left(y-y_{0}\right) \cos (\phi)\right]
\end{aligned}
$$

and where x and y are the coordinates of spatial position in degrees of visual angle. The form of the Gabor function in the frequency domain is

$$
\begin{align*}
G(u, v)= & c \exp \left\{-\pi\left[u_{\phi}^{2} / a^{2}+v_{\phi}^{2} / b^{2}\right]\right\} \\
& \times \exp \left\{-2 \pi i\left[x_{0}\left(u-u_{0}\right)+y_{0}\left(v-v_{0}\right)\right]\right\} \tag{3b}
\end{align*}
$$

where

$$
\begin{aligned}
& u_{\phi}=\left[\left(u-u_{0}\right) \cos (\phi)\right]+\left[\left(v-v_{0}\right) \sin (\phi)\right] \\
& v_{\phi}=-\left[\left(u-u_{0}\right) \sin (\phi)\right]+\left[\left(v-v_{0}\right) \cos (\phi)\right]
\end{aligned}
$$

Jones, J. P. \& Palmer L. A (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233-1258.

Spatial Frequencies: Gabor Patches

Med Low

IIII

Med High
High

Gabor Function

Cat

Marcelja, S. (1980). Mathematical description of the responses of simple cortical cells. Journal of the Optical Society of America, 70(11), 1297-1300.

Monkey

Daugman, J. G. (1980). Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research, 20(10), 847856

Jones, J. P., \& Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233-1258.

Jones, J. P., \& Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233-1258.

Iloul

Visual Information

- Visual stimuli have spatial frequency content (Fourier Analysis).
- High spatial frequencies
- Sharp borders and fine detail
- Low spatial frequencies
- Gradual changes and large features

Spatial Frequencies

- Small Receptive Fields detect high spatial frequencies
- Large receptive fields detect low spatial frequencies
- The eye and the brain are extremely adept at performing some tasks using only very low spatial frequencies.

Spatial Frequency Bands

Spatial Frequency Bands

回

OH

Effect of Adaptation Level on Contrast Sensitivity

- Two main effects of lowering adaptation level
- Lower sensitivity
- Loss of high spatial frequencies

A Typical Scene

Pedestrian Crosswalk

Spatial Frequency Filtering with Contrast Scaling

- Here is what happens when you filter the spatial frequencies and adjust the contrast of the image to be proportional to the loss of absolute contrast sensitivity of the human visual system at the lower levels of light adaptation.

Frequency Filtering with Contrast Scaling

300 td

3 td

Frequency Filtering with Contrast Scaling

Conclusions

- The retinal image can be described by its spatial frequency content
- The visual system can be described by its sensitivity to various spatial frequencies
- We can approximate vision at low levels by filtering out frequencies that we can't see at low levels
- The quality of our vision changes at low levels of light

Break

Face Recognition

Analysis \& Dynamic Interaction

- Sensory input is broken into separate streams of information
- Lines \& edges
- angles \& orientation,
- size \& scale
- color
- movement
- Over 50% of cortex has visual responses
- Reality is constructed from these component parts using goals, expectations, biases, rewards.

Lines and Contours
 Angles and Orientations

"Pop Out"-Ann Treisman

- Closed Areas
- Curvature
- Tilt
- Contrast
- Brightness
- Color
- Line Ends
- Movement

Texture Segregation Jacob Beck and Bela Julesz

Texture Segregation Jacob Beck and Bela Julesz

Texture Segregation Jacob Beck and Bela Julesz

Texture Segregation Jacob Beck and Bela Julesz

What we perceive does not correspond to physical properties

Asahi Figure

Asahi Figure

Ganglion Cell Receptive Field

Cortical Cell Receptive Fields

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., \& Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE transactions on pattern analysis and machine intelligence, 29(3), 411-426.

Input Assembly Input Assembly

Gallery Assembly

Alfred Yarbus, 1967

Eye Scan Patterns

Yarbus, A. L. (1967). Eye movements and vision (B. Haigh, Trans.). New York: Plenum Press.

An Unexpected Visitor by Ilya Repin in 1884

Free Examination

An Unexpected Visitor by Ilya Repin in 1884

Sasha Archibald (http://www.datadeluge.com/2012 1001 archive.html)
Yarbus, A. L. (1967). Eye movements and vision (B. Haigh, Trans.). New York: Plenum Press

Material Circumstances

An Unexpected Visitor by Ilya Repin in 1884

Sasha Archibald (http://www.datadeluge.com/2012 10 01 archive.html)

Robert Yin, 1969

Inversion Affects Faces

Peter Thompson (1980)

Feature Inversion Effect ("Thatcher Illusion")

Figure 1.

- 1 2mis!

Figure 2.

Carbon, C.-C., Schweinberger, S. R., Kaufmann, J. M., \& Leder, H. (2005). The Thatcher illusion seen by the brain: An event-related brain potentials study. Cognitive Brain Research, 24(3), 544-555. doi: 10.1016/j.cogbrainres.2005.03.008

Nancy Kanwisher, 1997

Fusiform Facial Area

Face

Fusiform Face Area

House

Parahippocampal Place Area

Downing, P., Liu, J., \& Kanwisher, N. (2001). Testing cognitive models of visual attention with fMRI and MEG. Neuropsychologia,

Face
FFA

House

PPA

Face
FFA

House

PPA

Face
FFA

House

PPA

Face
FFA

House

PPA

Faces and Emotions

Grandmother Cell?

Main Points

- Faces are important
- Different Features play different roles
- Eyes and Mouth are important
- The brain has special areas for faces

Attractors in Space

Giovanelli Illusion

Giovanelli Illusion

Giovanelli Illusion

-2
-1
0
1
2
Harvey, L. O., Jr., \& Schmidt, E. K. (2014). Self-organizing properties of the visual field: Gestalt forces in action. In A. Geremek, M. W. Greenlee \& S. Magnussen (Eds.), Perception Beyond Gestalt: Progress in vision research (pp. 67-81). London: Psychology Press: Taylor \& Francis Group.

Observed Vector Field
Predicted Gradient Field

-1
0
2

Harvey, L. O., Jr., \& Schmidt, E. K. (2014). Self-organizing properties of the visual field: Gestall forces in action. In A. Geremek, M. W. Greenlee \& S. Magnussen (Eds.), Perception Beyond Gestalt: Progress in vision research (pp. 67-81). London: Psychology Press: Taylor \& Francis Group.

Harvey, L. O., Jr., \& Schmidt, E. K. (2014). Sell-organizing properties of the visual field: Gestall forces in action. In A. Geremek, M. W. Greenlee \& S. Magnussen (Eds.), Perception Beyond Gestalt: Progress in vision research (pp. 67-81). London: Psychology Press: Taylor \& Francis Group.

Harvey, L. .o., Jr. \& Schmidt, E. K. (2014). Self-organizing properties of the visual field: Gestalt forces in action. In A. Geremek, M. W. Greenlee \& S. Magnussen (Eds.),
Perception Beyond Gestalt: Progress in vision research (pp. 67-81). London: Psychology Press: Taylor \& Francis Group.

Color Perception

It's in your mind

Why should we even see color?

- Detection
- Make objects stand out
- Make objects "invisible"
- Discrimination
- Separate objects
- Identification
- Decide what an object is

Basic Principle

Light has no color!

Benham's Top

Benham's Top

Michael Bach
University of Freiburg

http://www.michaelbach.de/ot/col benham/

Physical Properties of Light

- Intensity
- Dominant Wavelength
- Colormetric Purity

Color Experience has Three Dimensions

- Hue
- Saturation
- Brightness

Where Does Color Come From?

- Three Stages
- Stage 1 cone mechanisms (color mixing and matching)
- Stage 2: color-discrimination mechanisms
- Stage 3: color appearance mechanisms

Three Stages of Color Vision

- Receptor Stage (Color Matching)
- Three Types of Cones (S, M, L)
- Need Three Primaries (R, G, B)

- Stage 2 Cone Opponent Processes (Discrimination)
- Red-Green Opponent Process
- Yellow-Blue Opponent Process

- Luminance Process
- Stage 3 Color Opponent Processes (Appearance)
- Red-Green

Stage 3

- Yellow-Blue

Three Stages of Color Vision

- Receptor Stage (Color Matching)
- Three Types of Cones (S, M, L)
- Need Three Primaries (R, G, B)
- Stage 2 Cone Opponent Processes (Discrimination)
- Red-Green Opponent Process
- Yellow-Blue Opponent Process
- Luminance Process
- Stage 3 Color Opponent Processes (Appearance)
- Red-Green
- Yellow-Bitue

SENSATION \& PERCEPTION 4e, Figure 5.5 © 2015 Sinauer Associates, Inc.

Color Matching

- Bipartite Field
- Need only 3 primaries to match any color
- Primaries must not be matched by mixture of the other two
- Many possible sets of primaries
- C.I.E. Tristimulus values (X, Y, Z)

Color matching

Colors are assessed by matching them with reference colors on a small-field bipartite screen

Receptor Stage: Matching

- Three Cone Types: S, M, L
- Two Colors will appear identical when they evoke the same response pattern in the three cone types
- C.I.E. Tristimulus Values: X, Y, Z
- C.I.E. Chromaticity Coordinates: x, y, z

Receptor Stage: Color Matching Tristimulus Values

$$
\begin{aligned}
& C_{1} \equiv 1 X+2 Y+3 Z \\
& C_{2} \equiv 3 X+1 Y+1 Z
\end{aligned}
$$

$$
C_{1+2} \equiv 4 X+3 Y+4 Z
$$

Receptor Stage: Color Matching Tristimulus Values

$$
\begin{aligned}
C_{1} & \equiv 0.45 X+1.05 Y+0.50 Z \\
C_{2} & \equiv 1.35 X+3.15 Y+1.50 Z \\
C_{1+2} & \equiv 1.80 X+4.20 Y+2.00 Z
\end{aligned}
$$

C.I.E. Chromaticity:

Relative amount of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ Tristimulus Values

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& z=\frac{Z}{X+Y+Z}
\end{aligned}
$$

Receptor Stage: Color Matching Chromaticity Coordinates

$$
\begin{aligned}
& x=\frac{X}{X+Y+Z} \\
& y=\frac{Y}{X+Y+Z} \\
& z=\frac{Z}{X+Y+Z}
\end{aligned}
$$

Three Stages of Color Vision

- Receptor Stage (Color Matching)
- Three Types of Cones (S, M, L)
- Need Three Primaries (R, G, B)
- Stage 2 Cone Opponent Processes (Discrimination)
- Red-Green Opponent Process
- Yellow-Blue Opponent Process
- Luminance Process
- Stage 3 Color Opponent Processes (Appearance)
- Red-Green
- Yellow-Blue

Three Stages of Color Vision

- Receptor Stage (Color Matching)
- Three Types of Cones (S, M, L)
- Need Three Primaries (R, G, B)
- Stage 2 Cone Opponent Processes (Discrimination)
- Red-Green Opponent Process

(b)
- Yellow-Blue Opponent Process
- Luminance Process
- Stage 3 Color Opponent Processes (Appearance)
- Red-Green
- Yellow-Blue

Three Stages of Color Vision

- Receptor Stage (Color Matching)
- Three Types of Cones (S, M, L)
- Need Three Primaries (R, G, B)

- Stage 2 Cone Opponent Processes (Discrimination)
- Red-Green Opponent Process
- Yellow-Blue Opponent Process
- Luminance Process
- Stage 3 Color Opponent Processes (Appearance)
- Red-Green
- Yellow-Blue

Color Appearance: Naming

SENSATION \& PERCEPTION 4e, Figure 5.19 © 2015 Sinauer Associates, Inc.

Cone Response

Cone Opponent Processes

Color Opponent Processes

Opponent Processes:
 Color Appearance

 L-, M-, and S-cone photoreceptors (top and bottom). Second stage: $\mathrm{L}-\mathrm{M}$ and $\mathrm{M}-\mathrm{L}$ cone opponency (top) and $\mathrm{S}-(\mathrm{L}+\mathrm{M})$ and (L+M)-S cone opponency (bottom). Third stage: Color opponency (center) is achieved by summing the various cone-opponent second-stage outputs.$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Opponent Processes
 Opponent-Process Color Space

$$
\begin{array}{r}
r g=1.86 L-2.90 M+S \\
y b=3.24 L-2.21 M-S
\end{array}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
r g & =1.86 L-2.90 M+S \\
y b & =3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Color Opponent Processes
 Opponent-Process Color Space

$$
\begin{aligned}
& r g=1.86 L-2.90 M+S \\
& y b=3.24 L-2.21 M-S
\end{aligned}
$$

Afterimages

- Afterimages based on complimentary colors.
- Keep looking at the same spot in the center of the picture for 20 seconds.
- Look at a white surface: what do you see?

DARWINILLUSION.
DARW JENKINS (UNIVERSTTY OF GLASGOW, RICHARD WISEMAN (UNIVERSITY OF HERTFORDSHIRE).

Color Processing

Black and White Stream
Red and Green Stream
Yellow and Blue Stream

John Sadowski

McCollough Effect

Celeste McCollough Howard (1927-)

The Color Wheel

- Relative amounts of r / g and y / b contribution
- Two colors on opposite sides of the wheel
- Two colors on opposite sides of the color wheel, which when placed next to each other make both appear brighter.

"Color Blindness"

- Trichromacy: 3 primaries to match all colors
- Dichromacy: 2 primaries to match all colors
- Monocromacy:1 primary to match all colors

Dichromacy

- Protanopia
- Missing L-cone pigment (X chromosome)
- Neutral point at 498 nm
- Deuteranopia
- Missing M-cone pigment (X chromosome)
- Neutral point at 502 nm
- Tritanopia (chromosome 7)
- No single wavelength neutral point

a

Fig. 5. Results of the experiment on binocular color matching. The wavelengths seen by the color-blind eye (left scale) are matched by the indicated wavelengths in the normal eye (right scale).
a

E

Conclusions

- Vision invokes all levels of neuroscience
- Molecular
- Cellular
- Systems
- Behavioral

Conclusions

- Some visual functions are well-understood
- Neural organization of retina
- Color Vision (behavioral)
- Many visual functions are not well-understood
- Color Vision (systems)
- Object Recognition
- Conscious Experience

Levels of Understanding

- Molecular
- Cellular
- Systems
- Behavioral
- We want it all!

The End

